
Apache jUDDI Guide

Kurt T Stam, Red Hat, Inc.

Alex O'Ree, Apache Software Foundation (ASF), http://juddi.apache.org

Apache jUDDI Guide
by Kurt T Stam and Alex O'Ree

Copyright © 2003-2014 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the

License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS

IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for

the specific language governing permissions and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

i

Dedication
We’d like to dedicate this guide to Steve Viens and Andy Cutright who started this project back

in 2003.

ii

iii

Preface .. vii

1. Universal Description, Discovery and Integration (UDDI) .. 1

1.1. UDDI Protocol, Specification .. 1

1.2. UDDI Registry .. 1

1.3. jUDDI Project ... 3

2. Getting Started .. 9

2.1. Prerequisites .. 9

2.2. What should I Download? ... 9

2.3. Running jUDDI ... 9

2.4. Using the jUDDI Administrative Interface .. 10

2.5. Using jUDDI Web Services .. 13

2.6. Using jUDDI GUI to create your keygenerator and business 15

2.7. Running the demos in the disto ... 17

2.8. Examples on the jUDDI blog ... 17

2.9. What is new in jUDDI 3.2? .. 17

3. jUDDI Architecture ... 19

3.1. jUDDI Server .. 19

3.1.1. UDDI API layer uddi-ws using JAX-WS .. 19

3.1.2. Core UDDI juddi-core using JPA .. 20

3.1.3. Relational Databases .. 20

3.1.4. Servlet Containers .. 21

3.2. jUDDI GUI juddi-gui.war .. 21

4. Administration ... 23

4.1. Changing the Web Server Listen Port .. 23

4.2. Administering Users and Access Control .. 23

4.2.1. Administrative Users ... 23

4.2.2. End Users ... 23

4.3. Configuration Database Connections .. 30

4.3.1. Derby Out-of-the-Box .. 30

4.3.2. Switching to another Database .. 32

4.3.3. Switch to MySQL on Tomcat using OpenJPA ... 32

4.3.4. Switch to Postgres on Tomcat using OpenJPA ... 33

4.3.5. Switch to Postgres on JBoss using Hibernate .. 34

4.3.6. Switch to Oracle on Tomcat using Hibernate .. 35

4.3.7. Switch to HSQL on Tomcat using Hibernate .. 35

4.3.8. Switch to other db .. 36

4.3.9. Override persistence properties in the juddiv3.xml 36

4.4. Logging .. 36

4.5. Administering the GUI (juddi-gui.war) ... 37

4.6. Task: Signing the Digital Signature Applet jar file .. 37

4.7. Administrating your jUDDI Instance using the Administrative Console 38

4.8. Configure jUDDI .. 38

4.8.1. Enabling Remote Access .. 38

4.9. Monitoring the Status and Statistics ... 40

Apache

jUDDI

Guide

iv

4.9.1. Statistics .. 40

4.9.2. Status .. 42

4.10. Accessing the jUDDIv3 API ... 44

4.11. Security Guidance ... 44

4.11.1. jUDDI Server .. 44

4.11.2. jUDDI Client (and developers) ... 45

4.11.3. jUDDI GUI (Web user interface) .. 45

4.12. Backups, Upgrading and Data Migration ... 46

4.12.1. Database Backups ... 46

4.12.2. Config Backup .. 46

4.13. Upgrading jUDDI ... 46

4.14. Scaling jUDDI and Federation .. 47

4.14.1. Scaling the jUDDI Services (multiple servers) ... 47

4.14.2. Limitations of jUDDI .. 47

5. jUDDI Server Configuration (juddiv3.xml) ... 49

5.1. Authentication ... 49

5.2. Startup ... 50

5.3. Email .. 52

5.4. Query Properties ... 54

5.5. RMI Proxy .. 56

5.6. Key Generation and Cryptography ... 56

5.7. Subscription .. 57

5.8. Custody Transfer .. 59

5.9. Validation ... 59

5.10. Logging .. 60

5.11. Performance ... 61

5.12. Replication .. 61

5.13. Deploying two or more jUDDI server on the same application server 62

5.14. jUDDI GUI Configuration ... 62

5.15. jUDDI Client uddi.xml Settings ... 62

5.16. Encryption Keys .. 63

5.17. Customizing the juddi-gui .. 64

6. Replication Services .. 65

6.1. Introduction ... 65

6.2. UDDIv3 Replication Overview .. 65

6.2.1. UDDIv3 Replication Topology ... 65

6.2.2. Conflict handling .. 65

6.3. Configuring your jUDDI Node for replication .. 66

6.3.1. Changing the Node ID .. 66

6.3.2. Setting up CLIENT-CERT authentication .. 66

6.3.3. Setting the Replication Configuration ... 68

6.3.4. Performing Custody Transfer between nodes ... 71

6.3.5. What’s Supported and What’s Not ... 72

7. UDDI Seed Data ... 73

Apache

jUDDI

Guide

v

7.1. Seed Data Files .. 73

7.2. Tokens in the Seed Data .. 75

7.3. Customer Seed Data .. 75

8. How to deploy jUDDI To? .. 77

8.1. Tomcat ... 77

8.1.1. OpenJPA and CXF .. 77

8.1.2. Hibernate and CXF .. 77

8.1.3. OpenJPA and Axis2 ... 77

8.2. JBoss ... 78

8.2.1. JBossAS 6.0.0.GA .. 78

8.2.2. JBossAS 7.x/JBossEAP-6.x .. 80

8.3. Deploying to Glassfish .. 80

8.3.1. Glassfish jars ... 81

8.3.2. Configure the JUDDI datasource ... 81

8.3.3. Add juddiv3-cxf.war .. 82

8.3.4. Run jUDDI ... 82

9. Extending UDDI ... 83

9.1. Authentication modules ... 83

9.2. Subscription Notification Handlers .. 83

9.3. KeyedReference Value Set Validation Services .. 84

9.4. Cryptographic Providers .. 84

9.5. jUDDI Client Transport .. 84

10. Digital Signatures .. 85

10.1. Requirements .. 85

10.2. Using Digital Signatures using the jUDDI GUI ... 85

10.3. Frequently Asked Questions .. 85

11. Troubleshooting jUDDI ... 87

11.1. jUDDI Web Services, juddiv3.war ... 87

11.1.1. Enable debugging logging ... 87

11.2. jUDDI GUI, juddi-gui.war ... 87

11.3. jUDDI Client Java ... 87

11.3.1. Enable debugging logging ... 87

11.4. jUDDI Client .NET ... 87

11.5. Getting help .. 88

12. Contributing to jUDDI .. 89

12.1. License guidance .. 89

12.2. SVN access .. 89

12.3. Project structure .. 89

12.4. Building and testing jUDDI ... 89

12.4.1. All Java Components .. 89

12.4.2. .NET .. 90

12.5. Other ways to Contribute to jUDDI ... 91

12.5.1. Bug Reports ... 91

12.5.2. Internationalization .. 91

Apache

jUDDI

Guide

vi

12.5.3. Contributing Source code .. 91

12.5.4. Releases .. 92

12.6. What the? ... 92

Bibliography ... 93

Index ... 95

vii

Preface
The jUDDI project maintains a UDDIv3 registry that can be deployed to most modern JEE

application servers. The jUDDI project is part of the Apache Software Foundation and encourages

participation. It is easy to participate and if you discover a simple typo or would like to contribute

to this guide in general please read the README page (add link).

viii

1

Chapter 1. Universal Description,

Discovery and Integration (UDDI)

1.1. UDDI Protocol, Specification

The Universal Description, Discovery and Integration (UDDI) protocol is one of the major building

blocks required for successful Web services. UDDI creates a standard interoperable platform

that enables companies and applications to quickly, easily, and dynamically find and use Web

services over the Internet (or Intranet). UDDI also allows operational registries to be maintained

for different purposes in different contexts. UDDI is a cross-industry effort driven by major platform

and software providers, as well as marketplace operators and e-business leaders within the

OASIS standards consortium [uddi-oasis-open-org]. UDDI has gone through 3 revisions and the

latest version is 3.0.2 [uddi-v3]. Additional information regarding UDDI can be found at http://

uddi.xml.org [uddi-xml-org].

1.2. UDDI Registry

The UDDI Registry implements the UDDI specification . UDDI is a Web-based distributed

directory that enables businesses to list themselves on the Internet (or Intranet) and discover

each other, similar to a traditional phone book’s yellow and white pages. The UDDI registry

is both a white pages business directory and a technical specifications library. The Registry is

designed to store information about Businesses and Services and it holds references to detailed

documentation.

http://uddi.xml.org
http://uddi.xml.org

UDDI

Registry

2

Figure 1.1. Invocation Pattern using the UDDI Registry

In step 1 of Figure 1.1, “Invocation Pattern using the UDDI Registry” it is shown how a business

publishes services to the UDDI registry. In step 2, a client looks up the service in the registry and

receives service binding information. Finally in step 3, the client then uses the binding information

to invoke the service. The UDDI APIs are SOAP based for interoperability reasons. In this example

we’ve three APIs specified in the UDDI v3 specification, Security, Publication and Inquiry. The

UDDI v3 specification defines 9 APIs:

1. UDDI_Security_PortType, defines the API to obtain a security token. With a valid security token

a publisher can publish to the registry. A security token can be used for the entire session.

2. UDDI_Publication_PortType, defines the API to publish business and service information to

the UDDI registry.

3. UDDI_Inquiry_PortType, defines the API to query the UDDI registry. Typically this API does

not require a security token.

4. UDDI_CustodyTransfer_PortType, this API can be used to transfer the custody of a business

from one UDDI node to another.

5. UDDI_Subscription_PortType, defines the API to register for updates on a particular business

of service.

jUDDI

Project

3

6. UDDI_SubscriptionListener_PortType, defines the API a client must implement to receive

subscription notifications from a UDDI node.

7. UDDI_Replication_PortType, defines the API to replicate registry data between UDDI nodes.

8. UDDI_ValueSetValidation_PortType, by nodes to allow external providers of value set

validation. Web services to assess whether keyedReferences or keyedReferenceGroups are

valid.

9. UDDI_ValueSetCaching_PortType, UDDI nodes may perform validation of publisher

references themselves using the cached values obtained from such a Web service.

1.3. jUDDI Project

Apache jUDDI is server and client-side implementation of the UDDI v3 specification. The server

side is the UDDI Registry, the client side are the juddi-client libraries. There is a Java as well as

a C# version of the client libraries. The jUDDI GUI uses the client libraries to connect to a UDDI

Registry. For more details please see the Chapter 2, Getting Started.

The following is a list of all supported UDDI interfaces provided by this release of jUDDI

Table 1.1. Supported UDDI Interfaces

API Spec Supported Notes

Inquiry [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908076]

Required All Methods

Inquiry HTTP

GET [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908158]

Optional All Methods Plus a number of

additional methods

Publication [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908095]

Required All Methods

Security [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908115]

Optional All Methods Pluggable

authentication

Subscription [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908128]

Optional All Methods HTTP, SMTP delivery

implemented,

pluggable

Subscription

Listener [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908336]

Optional All Methods Client and Server

side implementations

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908076
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908076
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908076
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908076
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908158
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908158
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908158
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908158
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908158
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908095
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908095
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908095
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908095
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908115
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908115
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908115
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908115
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908128
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908128
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908128
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908128
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908336
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908336
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908336
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908336
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908336

jUDDI

Project

4

API Spec Supported Notes

Value Set Caching

[http://uddi.org/

pubs/uddi-

v3.0.2-20041019.htm#_Toc85908141]

Optional Partial Scheduled for 3.3

Value Set Validation

[http://uddi.org/

pubs/uddi-

v3.0.2-20041019.htm#_Toc85908141]

Optional Implemented Scheduled for 3.3

Replication [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908180]

Optional Partial Scheduled for 3.3

Custody and

Ownership

Transfer [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908118]

Optional All Methods Only supports user to

user transfers on the

same node

UDDIv2 Inquiry

[http://uddi.org/pubs/

ProgrammersAPI-

V2.04-

Published-20020719.htm#_Toc25137711]

Required BETA Supported via API

translator

UDDIv2 Publish

[http://uddi.org/pubs/

ProgrammersAPI-

V2.04-

Published-20020719.htm#_Toc25137722]

Required BETA Supported via API

translator

The following is a list of other features of interest that was either defined in the UDDI specifications

or in technical notes.

Table 1.2. jUDDI Features

API Spec Supported Notes

Digital Signatures Server req Full support Java and .NET

clients and in browser

signing

Client side

Subscription Listener

Optional Full support Java and .NET clients

WSDL to UDDI

[https://www.oasis-

open.org/committees/

uddi-spec/doc/tn/

Recommendation Full support Java, .NET clients

and web GUI

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908141
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908141
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908141
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908141
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908141
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908141
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908141
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908141
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908180
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908180
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908180
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908180
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908118
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908118
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908118
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908118
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908118
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908118
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137711
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137711
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137711
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137711
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137711
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137722
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137722
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137722
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137722
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137722
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

jUDDI

Project

5

API Spec Supported Notes

uddi-spec-tc-tn-wsdl-

v2.htm]

WADL to UDDI

[https://www.oasis-

open.org/committees/

uddi-spec/doc/tn/

uddi-spec-tc-tn-wsdl-

v2.htm]

Recommendation Full support Java, .NET clients

and web GUI

BPEL to UDDI

[https://www.oasis-

open.org/committees/

uddi-spec/doc/tn/

uddi-spec-tc-tn-

bpel-20040725.htm]

Recommendation Full support Java client

UDDI Technical

Compliance Kit

- Full support Provides a

standalone UDDI

testing capability

Internationalization Recommendation Yes Both end user

interfaces (User

and Admin web

apps) are supported.

Error messages

from the server are

external and can be

overwritten.

Registration via

Annotations

- Full support Provides automated

registration of classes

via Java/.NET

Annotations

UDDI defines a number of sorting mechanisms [http://uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908080].

Table 1.3. Supported Sort Orders

Find Qualifier Spec Supported Notes

binarySort [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#sortOrd]

Required yes

caseInsensitiveSort

[http://uddi.org/

Required party Only when using

caseInsentitiveMatch,

JIRA opened [https://

https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel-20040725.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel-20040725.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel-20040725.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel-20040725.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel-20040725.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel-20040725.htm
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908080
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908080
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908080
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#sortOrd
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#sortOrd
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#sortOrd
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#sortOrd
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#caseInsensSort
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#caseInsensSort
https://issues.apache.org/jira/browse/JUDDI-785
https://issues.apache.org/jira/browse/JUDDI-785

jUDDI

Project

6

Find Qualifier Spec Supported Notes

pubs/uddi-

v3.0.2-20041019.htm#caseInsensSort]

issues.apache.org/

jira/browse/

JUDDI-785]

caseSensitiveSort

[http://uddi.org/

pubs/uddi-

v3.0.2-20041019.htm#_Toc85908355]

Required yes

sortByNameAsc

[http://uddi.org/

pubs/uddi-

v3.0.2-20041019.htm#_Toc85908356]

Required yes

sortByNameDesc

[http://uddi.org/

pubs/uddi-

v3.0.2-20041019.htm#_Toc85908357]

Required yes

sortByDateAsc [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908358]

Required yes

sortByDateDesc

[http://uddi.org/

pubs/uddi-

v3.0.2-20041019.htm#_Toc85908359]

Required yes

JIS-X4061 [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc42047570]

Optional no Japanese Character

Strings

UDDI also defines a number of Find Qualifiers [http://uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908080], which modify the default search behavior of the Inquiry

[http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908076] Find* APIs.

Table 1.4. Supported Find Qualifiers

Find Qualifier Spec Supported

andAllKeys [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908360]

Required yes

approximateMatch [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908346]

Required yes

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#caseInsensSort
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#caseInsensSort
https://issues.apache.org/jira/browse/JUDDI-785
https://issues.apache.org/jira/browse/JUDDI-785
https://issues.apache.org/jira/browse/JUDDI-785
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908355
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908355
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908355
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908355
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908356
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908356
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908356
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908356
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908357
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908357
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908357
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908357
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908358
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908358
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908358
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908358
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908359
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908359
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908359
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908359
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc42047570
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc42047570
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc42047570
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc42047570
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908080
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908080
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908080
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908076
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908076
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908360
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908360
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908360
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908360
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908346
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908346
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908346
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908346

jUDDI

Project

7

Find Qualifier Spec Supported

bindingSubset [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908365]

Required yes

caseInsensitiveMatch

[http://uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908348]

Required yes

caseSensitiveMatch

[http://uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908349]

Required yes

combineCategoryBags

[http://uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908363]

Required yes

diacriticInsensitiveMatch

[http://uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908350]

Optional yes

diacriticSensitiveMatch

[http://uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908351]

Required yes

exactMatch [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908347]

Required yes

signaturePresent [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908367]

Required yes

orAllKeys [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908361]

Required yes

orLikeKeys [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908362]

Required yes

serviceSubset [http://

uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908364]

Required yes

suppressProjectedServices

[http://uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908366]

Required yes

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908365
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908365
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908365
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908365
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908348
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908348
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908348
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908349
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908349
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908349
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908363
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908363
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908363
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908350
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908350
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908350
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908351
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908351
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908351
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908347
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908347
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908347
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908347
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908367
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908367
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908367
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908367
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908361
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908361
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908361
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908361
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908362
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908362
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908362
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908362
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908364
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908364
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908364
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908364
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908366
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908366
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908366

8

9

Chapter 2. Getting Started
The jUDDI project is an open source implementation of the UDDI specification. The registry

implementation is a WebArchive (war) juddiv3.war which is deployable to any JEE container. The

application exposes a WebService API which can be accessed using any generic SOAP client,

the juddi-gui or, if you are looking to integrate the UDDI api in your application, the Java or .NET

version of the juddi-client.

2.1. Prerequisites

jUDDI is written in Java and minimally requires

• JDK1.6+, although jUDDI should run on JDK1.6, please use the latest JDK if possible

optionally

• Maven 3.0.3+ if you want to run the examples

• A Relation Database, to replace Derby

The versions mentioned above are minimal versions and it is recommended to use the latest

version available. By default jUDDI ships and uses a Derby database. After evaluation you

probably want to move to a more full featured database.

2.2. What should I Download?

At the jUDDI download page http://juddi.apache.org/releases.html, you have the chioce of two

distributions; the juddi-client distro or the juddi-distro, where the latter includes both client and

server. Each distribution contains signed binaries, source, examples and documentation. It you

are not sure which distribution to download, then take the juddi-distro since it contains everything

which is by far the easiest way to get going.

2.3. Running jUDDI

After downloading and unpacking of the juddi-distro, you can start the preconfigured tomcat server

by going into the juddi-distro-<version> directory and running startup

$ cd apache-tomcat-<version>/bin

$./startup.sh

Once the server is up and running can make sure the root data was properly installed by browsing

to http://localhost:8080/juddiv3

You should see the screen show in Figure 2.1, “jUDDI welcome page”, the jUDDI Welcome Page.

http://juddi.apache.org/releases.html
http://localhost:8080/juddiv3

Using

the

jUDDI

Administrative

Interface

10

Figure 2.1. jUDDI welcome page

Before continuing please check the jUDDI instalation Status on this page and make sure it says:

"jUDDI has been successfully installed!". If the page won’t load or the status is anything else

please check the apache-tomcat-x.x.x/logs/juddi.log and if you need help you can contact us via

the jUDDI user mailing list. Also note that it created a root partition, using seed data. You can

modify or add to the seed, for that see Chapter 7, UDDI Seed Data.

2.4. Using the jUDDI Administrative Interface

The juddi admin console runs at http://localhost:8080/juddiv3/admin and requires a login with the

role of uddiadmin via the basic authentication popup dialog box. Check the apache-tomcat-x.x.x/

conf/tomcat-users.conf file for the password of the uddiadmin user. Please change the password

before going live.

http://localhost:8080/juddiv3/admin

Using

the

jUDDI

Administrative

Interface

11

Figure 2.2. jUDDI admin

By popular demand we brought back the happy jUDDI!' page. Just click on Status and Statistics

page. By default we run on CXF, so it is normal if says the AxisServlet is not found. There should

be no other red on this page.

Using

the

jUDDI

Administrative

Interface

12

Figure 2.3. Happy jUDDI.

By default jUDDI ships with 2 publishers: root and uddi. Root is the owner of the repository, while

the uddi user is the owner of all the default tmodels and categorizations. Please use the root user

to log into the form login in the admin console.

Important

Please use the root user to log into the form login in the admin console.

Using

jUDDI

Web

Services

13

Figure 2.4. Form login

You will now be able to do more then simple browsing. Navigate to the Administration and select

save_publisher from the dropdown. This will allow you to add your own publisher.

Figure 2.5. Add Publisher

2.5. Using jUDDI Web Services

OK now that we have verified that jUDDI is good to go we can inspect the UDDI WebService API

by browsing to http://localhost:8080/juddiv3/services

You should see an overview of all the SOAP Services and their WSDLs.

http://localhost:8080/juddiv3/services

Using

jUDDI

Web

Services

14

Figure 2.6. jUDDI Services

The services page shows you the available endpoints and methods available. Using any SOAP

client, you should be able to import the wsdls into a tool like SoapUI as shown in Figure 2.7,

“Getting an authToken using SoapUI” and send some sample requests to jUDDI to test:

Using

jUDDI

GUI

to

create

your

keygenerator

and

business

15

Figure 2.7. Getting an authToken using SoapUI

Tip

Try obtaining an authToken for the publisher you created earlier.

2.6. Using jUDDI GUI to create your keygenerator and

business

Navigate to http://localhost:8080/juddi-gui/ to get to the jUDDI-GUI. Please use the Form Login and

use the credentials of the publisher you created above. You can browse around, but really the first

thing that needs to be done is to create a Key Generator or Partition at http://localhost:8080/juddi-

gui/tmodelPartitions.jsp. A Key Generator is needed to save human readable, universally unique

UDDIv3 keys. Please read more about UDDI v3 formatted keys, but the short story is that UDDI

v3 keys are formatted like: uddi:<domain>:name. For example, if you wanted a tModel defined

http://localhost:8080/juddi-gui/
http://localhost:8080/juddi-gui/tmodelPartitions.jsp
http://localhost:8080/juddi-gui/tmodelPartitions.jsp

Using

jUDDI

GUI

to

create

your

keygenerator

and

business

16

as "uddi:www.mycompany.com:serviceauthenticationmethod", you would first have to create a

tModel key generator with value "uddi:www.mycompany.com:keygenerator".

Figure 2.8. Create Key Generator

Next create your business using the key generator format you just registered. For example in

Figure 2.9, “Create Business” we use a businessKey of uddi:www.mycompany.com:mybusiness.

Running

the

demos

in

the

disto

17

Figure 2.9. Create Business

See the Client and GUI Guide [stam-oree] for more details on how to use the GUI.

2.7. Running the demos in the disto

The jUDDI distribution ships with a lot of demos to get yourself more familiarized with the features

of jUDDI. You are encouraged to go over the demos and follow the instructions in the README

files. To ensure the demos work they use the root publisher. In practice you should not be using

the root publisher for this, but rather your own publisher you created above. To reference your own

publisher simply update the uddi.xml file in each demo. For more details on running the demos

see the Client and GUI Guide [stam-oree].

2.8. Examples on the jUDDI blog

The jUDDI blog at http://apachejuddi.blogspot.com/ has examples as well as screencasts. This

can be a useful resource to learn about some new feature or to simply get started.

2.9. What is new in jUDDI 3.2?

Here’s the change log for version 3.2

• A new end user interface based on Twitter’s Bootstrap

• A new administrative user interface based on Twitter’s Bootstrap with in browser monitoring

http://apachejuddi.blogspot.com/

What

is

new

in

jUDDI

3.2?

18

• A client side subscription callback API

• Client distribution package

• Many more examples

• WADL to UDDI mappings

• All credentials are now encryptable with command line tools

• Removal of the porlet services

• Deployment templates for Jboss EAP 6+

• Client side digital signature support

• REST style interface for Inquiry API

• Added many more tModels to the base install

• More documentation

19

Chapter 3. jUDDI Architecture

3.1. jUDDI Server

The jUDDI Architecture leverages well known frameworks to minimize the codebase we need to

maintain. The API layer uses JAX-WS, while the persistence layer uses JPA. The entire server

is packages as a war archive that can be deployed to different servlet containers with minimal

configuration changes. The JPA layer uses JDBC to communicate to a relational database.

Figure 3.1, “jUDDI Architecture” shows the different components, where the implementation

providers marked with a blue dot are the implementations we use by default.

Figure 3.1. jUDDI Architecture

3.1.1. UDDI API layer uddi-ws using JAX-WS

The API layer is generated from the WSDL files provided with the UDDI specification. Since the

3.2 release we support both the UDDIv2 as well as the UDDIv3 API. The uddi-ws components

Core

UDDI

juddi-

core

using

JPA

20

leverages JAX-WS annotations to bring up the UDDIv2 and v3 Endpoints. In addition to these two

sets of SOAP based services, we also support a REST based API. The REST based API is a

subset of the SOAP API. The default JAX-WS implemention used is Apache CXF, but we also

offer scripted deployments for JBossWS and Axis2. Each WebService stack relies on the web.xml

as well as vendor specific configuration files. For example, CXF uses a beans.xml file in the WEB-

INF directory. For more details on this see ???.

The juddi-client.jar can be used on the client side to communicate with the API layer. The

juddi-client can be configured to use either SOAP, RMI or and inVM protocol, where the inVM

protocol is the most performant. For more details on the juddi-client configuration options see the

Client Guide [stam-oree].

3.1.2. Core UDDI juddi-core using JPA

The jUDDI server logic is packaged in the juddi-core.jar. It implements all of the server

side behavior defined in the UDDI specification. For persistence it uses the Java Peristence

Api (JPA). The default JPA implemenation used is OpenJPA, but Hibernate is supported as

well. The configuration for JPA implementations lives in the WEB-INF/classes/META-INF/

persistence.xml file. This file also references the datasource that is used to connect to the

datasource.

Important

It is important to note that there are two JARs provided through maven. If you will

be using Hibernate, please use the juddi-core JAR, if you are using OpenJPA, use

juddi-core-openjpa.

The difference between these JARs is that the persistence classes within juddi-core-

openjpa have been enhanced (http://people.apache.org/~mprudhom/openjpa/site/openjpa-

project/manual/ref_guide_pc_enhance.html). Unfortunately, the Hibernate classloader does not

deal well with these enhanced classes, so it it important to note not to use the juddi-core-openjpa

JAR with Hibernate.

3.1.3. Relational Databases

By default we ship jUDDI preconfigured with a Java based Database called Derby. This database

persists to the local file system, typically from where the application was started.

Note

To switch databases, you need to change the JDBC driver configuration in the

datasource as well as the database dialect setting in the persistence.xml.

For details on switching database see the Section 4.3, “Configuration Database Connections”.

http://people.apache.org/~mprudhom/openjpa/site/openjpa-project/manual/ref_guide_pc_enhance.html
http://people.apache.org/~mprudhom/openjpa/site/openjpa-project/manual/ref_guide_pc_enhance.html

Servlet

Containers

21

3.1.4. Servlet Containers

The jUDDI server is packaged up a WebArchive (juddiv3.war). This war archive can be deployed

to different servlet containers with minimal configuration changes. By default we ship on Apache

Tomcat but we also have scripted deployment support for GlassFish and JBoss.

Tip

Most open source EE6 containers (JBoss, Geronimo, Glassfish) ship with jUDDI

preconfigured to pass the JAXR tests in the TCK.

When switching containers you may need to use different configuration to create a datasource.

Some containers already package up a WebServices stack which can be used instead of the

CXF packages up in juddiv3.war/WEB-INF/lib. In that case the number of dependent jars in the

juddiv3.war can be reduced significantly. For details on switching containers see the Chapter 8,

How to deploy jUDDI To?.

3.2. jUDDI GUI juddi-gui.war

The jUDDI GUI is also a Web Archive that is deployed along side the juddiv3 server in the same

servlet container. The GUI uses the juddi-client to communicate to the UDDI API Endpoints.

It can use a SOAP, RMI or an inVM transport protocol, so the GUI can be deployed in a different

location then the server as long as it can connect to the UDDI SOAP API.

Figure 3.2. jUDDI Client and Console Architecture

jUDDI

GUI

juddi-

gui.war

22

Figure 3.2, “jUDDI Client and Console Architecture” shows the admin console and the juddi-gui.

Typically one one run the admin console behind a firewall. The admin console interacts over a

jUDDI WS API and, among other things, it can be used to create and delete publishers.

The juddi-gui can be configured to connect to any UDDIv2 or UDDIv3 compliant UDDI server.

Figure 3.3. jUDDI Console Architecture

You may have a jUDDI v3 Server for each type of environment (Dev, QA and Prod) and you would

only need one console to connect to each one of them.

For details on using the GUI see the Client and GUI Guide [stam-oree].

23

Chapter 4. Administration

4.1. Changing the Web Server Listen Port

If you want to change the port Tomcat listens on to something non-standard (something other

than 8080), use the following guidance.

jUDDI Server (Tomcat) - This assumes you are using the jUDDI server bundled with Apache

Tomcat. For other application servers, consult their documentation, however the juddiv3.xml must

still be altered.

• Edit conf/server.xml and change the port within the <Connector> element.

• Edit webapps/juddiv3/WEB-INF/classes/juddiv3.xml and change the port number jUDDI

Server Baseurl.

• Edit webapps/juddiv3/WEB-INF/config.properties and change the port numbers for

"securityurl" and "juddipapi".

• Edit webapps/juddi-gui/META-INF/config.properties and change the port numbers for all

of the URLs listed.

If these changes are made before jUDDI has been started for the first time, then no further action is

required. If jUDDI has been previously started, you’ll need to either A) update the URL information

for the Node’s root business entity URLs or B) turn on "Seed Always" in the juddiv3.xml file to

auto update the changes.

4.2. Administering Users and Access Control

As of version 3.2, jUDDI Authentication is handled from two perspectives, administrator and end

user access.

4.2.1. Administrative Users

Administrative users have special access to juddi-gui’s remote configuration page at http://

localhost:8080/juddi-gui/settings.jsp and to the Administrative Console at http://localhost:8080/

juddiv3/admin. Access to both of these is configured at the container level (i.e. Jboss, Tomcat,

etc). By default, users that need to access these pages need to have the "uddiadmin" role (which

is defined in the WEB-INF/web.xml of both web application archives). When you are running on

tomcat this configuration can be found in the <tomcat>/conf/tomcat-users.conf file.

4.2.2. End Users

End users typically will either access jUDDI’s services directly at http://localhost:8080/juddiv3/

or via the user interfaces http://localhost:8080/juddi-gui. In both cases, authentication is handled

http://localhost:8080/juddi-gui/settings.jsp
http://localhost:8080/juddi-gui/settings.jsp
http://localhost:8080/juddiv3/admin
http://localhost:8080/juddiv3/admin
http://localhost:8080/juddiv3/
http://localhost:8080/juddi-gui

End

Users

24

via jUDDI’s Authentication providers which is configured in juddiv3.war/WEB-INF/classes/

juddiv3.xml.

4.2.2.1. Under the Hood

In order to enforce proper write access to jUDDI, each request to jUDDI needs a valid authToken.

Note that read access is not restricted (by default, but can be enabled) and therefore queries into

the registries are not restricted.

To obtain a valid authToken a getAuthToken() request must be made, where a GetAuthToken

object is passed. On the GetAuthToken object a userid and credential (password) needs to be set.

org.uddi.api_v3.GetAuthToken ga = new org.uddi.api_v3.GetAuthToken();

ga.setUserID("username");

ga.setCred("password");

org.uddi.api_v3.AuthToken token = securityService.getAuthToken(ga);

The property juddi/auth/* in the juddiv3.xml configuration file can be used to configure how

jUDDI is going to check the credentials passed in on the GetAuthToken request. By default

jUDDI uses the JUDDIAuthenticator implementation. You can provide your own authentication

implementation or use any of the ones mention below. The implementation needs to implement the

org.apache.juddi.auth.Authenticator interface, and juddi/auth/authenticator/class property

should refer to the implementation class.

There are two phases involved in Authentication. The authenticate phase and the identify phase.

Both of these phases are represented by a method in the Authenticator interface.

The authenticate phase occurs during the GetAuthToken request as described above. The goal of

this phase is to turn a user id and credentials into a valid publisher id. The publisher id (referred to

as the "authorized name" in UDDI terminology) is the value that assigns ownership within UDDI.

Whenever a new entity is created, it must be tagged with ownership by the authorized name of

the publisher. The value of the publisher id can be completely transparent to jUDDI - the only

requirement is that one exists to assign to new entities. Thus, the authenticate phase must return

a non-null publisher id. Upon completion of the GetAuthToken request, an authentication token

is issued to the caller.

In subsequent calls to the UDDI API that require authentication, the token issued from the

GetAuthToken request must be provided. This leads to the next phase of jUDDI authentication

- the identify phase.

The identify phase is responsible for turning the authentication token (or the publisher

id associated with that authentication token) into a valid UddiEntityPublisher object. The

UddiEntityPublisher object contains all the properties necessary to handle ownership of UDDI

entities. Thus, the token (or publisher id) is used to "identify" the publisher.

The two phases provide compliance with the UDDI authentication structure and grant flexibility

for users that wish to provide their own authentication mechanism. Handling of credentials and

End

Users

25

publisher properties can be done entirely outside of jUDDI. However, jUDDI provides the Publisher

entity, which is a sub-class of UddiEntityPublisher, to persist publisher properties within jUDDI.

This is used in the default authentication and is the subject of the next section.

4.2.2.2. Choosing a Cryptographic Provider

jUDDI provides a number of cryptographic providers. Some of them may not be available in your

region of the world due to export restrictions. All of these providers are provides that are included

with the Oracle Java Runtime Environment.

4.2.2.2.1. jUDDI’s Cryptographic Providers

Tip

The AES256Cryptor requires the Sun Java unlimited strength Crypograhpic

Extensions to be installed. OpenJDK users are not affected by this.

In the following section, Authentication, a Cryptographic Provider must be selected using the

following property in juddiv3.xml:

juddi/cryptor

4.2.2.2.2. jUDDI Server Providers

• org.apache.juddi.cryptor.DefaultCryptor - Password Based Encryption With MD5 and DES

• org.apache.juddi.cryptor.TripleDESCrytor - Triple DES 168 bit

• org.apache.juddi.cryptor.AES128Cryptor - Advanced Encryption Standard 128 bit

• org.apache.juddi.cryptor.AES256Cryptor - Advanced Encryption Standard 256 bit

4.2.2.3. jUDDI Client Providers (Java and .NET)

• org.apache.juddi.v3.client.crypto.DefaultCryptor - Password Based Encryption With MD5 and

DES

• org.apache.juddi.v3.client.crypto.TripleDESCrytor - Triple DES 168 bit

• org.apache.juddi.v3.client.crypto.AES128Cryptor - Advanced Encryption Standard 128 bit

• org.apache.juddi.v3.client.crypto.AES256Cryptor - Advanced Encryption Standard 256 bit

4.2.2.3.1. Encrypting a Password

To encrypt a password, the jUDDI Tomcat server comes with a basic Windows Batch file and a

Unix Bash script which will fire off the correct Java command. It is located at the following path:

End

Users

26

{tomcat_home}/bin/juddi-cryptor.bat/sh

Tip

The jUDDI-Client (Java only) uses the same encryption keys and the jUDDI Server,

therefore encrypted passwords using this tool will work with the jUDDI-client’s

configuration file.

In addition, an MD5 hashing program is included to assist with setting users passwords for the

MD5XMLDocAuthenticator.

{tomcat_home}/bin/juddi-md5.bat/sh

Tip

You can generate new encryption keys using this utility by specifying the System

Property -Dgenerate=true option. You can then use them using the System

Property -Djuddi.encryptionKeyFile.TripleDESCrytor=path/to/key

4.2.2.4. jUDDI Authentication

The default authentication mechanism provided by jUDDI is the JUDDIAuthenticator. The

authenticate phase of the JUDDIAuthenticator simply checks to see if the user id passed in has an

associated record in the Publisher table. No credentials checks are made. If, during authentication,

the publisher does not exist, it the publisher is added on the fly.

Warning

Do not use jUDDI Default Authenticator in production. It does not compare

passwords to anything!

The identify phase uses the publisher id to retrieve the Publisher record and return it. All necessary

publisher properties are populated as Publisher inherits from UddiEntityPublisher.

juddi/auth/authenticator/class = org.apache.juddi.auth.JUDDIAuthentication

4.2.2.5. XMLDocAuthentication

The XMLDocAuthentication implementation needs a XML file on the classpath. The juddiv3.xml

file would need to look like

juddi/auth/authenticator/class = org.apache.juddi.auth.XMLDocAuthentication

End

Users

27

juddi/auth/usersfile = juddi-users.xml

where the name of the XML can be provided but it defaults to juddi-users.xml, and the content

of the file would looks something like

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<juddi-users>

 <user userid="anou_mana" password="password" />

 <user userid="bozo" password="clown" />

 <user userid="sviens" password="password" />

</juddi-users>

The authenticate phase checks that the user id and password match a value in the XML file. The

identify phase simply uses the user id to populate a new UddiEntityPublisher.

4.2.2.6. CryptedXMLDocAuthentication

The CryptedXMLDocAuthentication implementation is similar to the XMLDocAuthentication

implementation, but the passwords are encrypted.

juddi/auth/authenticator/class =

 org.apache.juddi.auth.CryptedXMLDocAuthentication

juddi/auth/usersfile = juddi-users-encrypted.xml

juddi/cryptor = org.apache.juddi.cryptor.DefaultCryptor

where the name user credential file is juddi-users-encrypted.xml, and the content of the file would

looks something like

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<juddi-users>

 <user userid="anou_mana" password="+j/kXkZJftwTFTBH6Cf6IQ=="/>

 <user userid="bozo" password="Na2Ait+2aW0="/>

 <user userid="sviens" password="+j/kXkZJftwTFTBH6Cf6IQ=="/>

</juddi-users>

The DefaultCryptor implementation uses BEWithMD5AndDES and Base64 to encrypt the

passwords. Note that the code in the AuthenticatorTest can be used to learn more about how

to use this Authenticator implementation. You can plugin your own encryption algorithm by

implementing the org.apache.juddi.cryptor.Cryptor interface and referencing your implementation

class in the juddi.cryptor property. The authenticate phase checks that the user id and password

match a value in the XML file. The identify phase simply uses the user id to populate a new

UddiEntityPublisher.

4.2.2.7. MD5XMLDocAuthenticator

The MD5XMLDocAuthenticator implementation is similar to the XMLDocAuthentication

implementation, but the passwords are hashed using MD5.

End

Users

28

juddi/auth/authenticator/class =

 org.apache.juddi.auth.MD5XMLDocAuthenticator

juddi/auth/usersfile = juddi-users-hashed.xml

juddi/cryptor = org.apache.juddi.cryptor.DefaultCryptor

where the name user credential file is juddi-users-encrypted.xml, and the content of the file would

looks something like

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<juddi-users>

 <user userid="anou_mana" password="+j/kXkZJftwTFTBH6Cf6IQ=="/>

 <user userid="bozo" password="Na2Ait+2aW0="/>

 <user userid="sviens" password="+j/kXkZJftwTFTBH6Cf6IQ=="/>

</juddi-users>

The DefaultCryptor implementation uses BEWithMD5AndDES and Base64 to encrypt the

passwords. Note that the code in the AuthenticatorTest can be used to learn more about how

to use this Authenticator implementation. You can plugin your own encryption algorithm by

implementing the org.apache.juddi.cryptor.Cryptor interface and referencing your implementation

class in the juddi.cryptor property. The authenticate phase checks that the user id and password

match a value in the XML file. The identify phase simply uses the user id to populate a new

UddiEntityPublisher.

4.2.2.8. LDAP Authentication

LdapSimpleAuthenticator provides a way of authenticating users using LDAP simple

authentication. It is fairly rudimentary and more LDAP integration is planned in the future, but this

class allows you to authenticate a user based on an LDAP prinicipal, provided that the principal

(usually the distinguished name) and the juddi publisher ID are the same.

To use this class you must add the following properties to the juddi3v.xml file:

juddi/auth/authenticator/class=org.apache.juddi.auth.LdapSimpleAuthenticator

juddi/auth/authenticator/url=ldap://localhost:389

juddi/auth/authenticator/style=simple

The juddi/authenticator/url property configures the LdapSimpleAuthenticator class so that it knows

where the LDAP server resides. Future work is planned in this area to use the LDAP uid rather

than the LDAP principal as the default publisher id.

LdapExpandedAuthenticator provides a slightly more flexible way to authenticate users via LDAP.

juddi/auth/authenticator/

class=org.apache.juddi.v3.auth.LdapSimpleAuthenticator

juddi/auth/authenticator/url=ldap://localhost:389

juddi/auth/authenticator/style=simple

juddi/auth/authenticator/ldapexp=CN=%s, OU=Users,DC=Domain, etc

End

Users

29

4.2.2.9. JBoss Authentication

Is it possible to hook up to third party credential stores. If for example jUDDI is deployed to

the JBoss Application server it is possible to hook up to it’s authentication machinery. The

JBossAuthenticator class is provided in the docs/examples/auth directory. This class enables

jUDDI deployments on JBoss use a server security domain to authenticate users.

Tip

The JBoss authentication is not distributed with jUDDI. It can be

found here: http://svn.apache.org/viewvc/juddi/extras/jbossauthenticator/src/org/

apache/juddi/auth/JBossAuthenticator.java?view=markup

To use this class you must add the following properties to the juddiv3.xml file:

juddi/auth/authenticator/class=org.apache.juddi.auth.JBossAuthenticator

juddi/auth/securityDomain=java:/jaas/other

The juddi/auth/authenticator/class property plugs the JbossAuthenticator class into the jUDDI

the Authenticator framework. The juddi/sercuityDomain, configures the JBossAuthenticator class

where it can lookup the application server’s security domain, which it will use to perform the

authentication. Note that JBoss creates one security domain for each application policy element

on the $JBOSS_HOME/server/default/conf/login-config.xml file, which gets bound to the

server JNDI tree with name java:/jaas/<application-policy-name></application-policy-name>. If a

lookup refers to a non existent application policy it defaults to a policy named other.

4.2.2.10. Container Based Authentication

Certain security configurations may use HTTP based authentication. In this scenario, jUDDI simply

trust’s that the container will authenticate the user via some mechanism and uses that username

for interactions with jUDDI. To configure this setup, use the following configuration settings in

juddiv3.xml:

juddi/auth/authenticator/

class=org.apache.juddi.auth.HTTPContainerAuthenticator

juddi/auth/authenticator@useAuthToken=false

In addition, you’ll have to make whatever changes necessary to the juddiv3.war/WEB-INF/

web.xml file in order to use the chosen authentication mechanism. See your appliation server’s

documentation for details on this.

4.2.2.11. Authentication by Proxy (HTTP Header)

Certain security configurations that enforce authentication before requests come to the web

application, such as via Apache HTTPD or a reverse SSL proxy. In these cases, the proxy provided

http://svn.apache.org/viewvc/juddi/extras/jbossauthenticator/src/org/apache/juddi/auth/JBossAuthenticator.java?view=markup
http://svn.apache.org/viewvc/juddi/extras/jbossauthenticator/src/org/apache/juddi/auth/JBossAuthenticator.java?view=markup

Configuration

Database

Connections

30

authenticates the user, then passes along the user’s identity via a HTTP header. To configure this

setup, use the following configuration settings in juddiv3.xml:

juddi/auth/authenticator/class=org.apache.juddi.auth.HTTPHeaderAuthenticator

juddi/auth/authenticator/header=(Some HTTP Header)

juddi/auth/authenticator@useAuthToken=false

4.3. Configuration Database Connections

4.3.1. Derby Out-of-the-Box

By default jUDDI uses an embedded Derby database. This allows us to build a downloadable

distribution that works out-of-the-box, without having to do any database setup work. We

recommend switching to an enterprise-level database before going to production. JUDDI uses the

Java Persistence API (JPA) in the back end and we’ve tested with both OpenJPA and Hibernate.

To configure which JPA provider you want to use, you will need to edit the configuration in

the juddiv3.war/WEB-INF/classes/META-INF/persistence.xml. The content of this file is pretty

standard between JPA implementations, however there can be slight differences. To make it

easy we created different versions for different JPA implementations and target platforms. All

JPA implementation have an enhancement phase, where the persistence model classes are

enhanced. Hibernate does this at runtime, OpenJPA prefers doing this at compile time. This is

the reason we ship two versions of juddi-core, where the juddi-core-openjpa.jar contains classes

(byte-code) enhanced by OpenJPA. This is the reason this jar is larger then the juddi-core.jar.

For Hibernate, for testing the content of this file looks like

<?xml version="1.0" encoding="UTF-8"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"

 version="1.0">

 <persistence-unit name="juddiDatabase" transaction-

type="RESOURCE_LOCAL">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>java:comp/env/jdbc/JuddiDS</jta-data-source>

 <!-- entity classes -->

 <class>org.apache.juddi.model.Address</class>

 <class>org.apache.juddi.model.AddressLine</class>

 ...

 <class>org.apache.juddi.model.UddiEntity</class>

 <class>org.apache.juddi.model.UddiEntityPublisher</class>

 <properties>

 <property name="hibernate.archive.autodetection" value="class"/>

 <property name="hibernate.hbm2ddl.auto" value="update"/>

 <property name="hibernate.show_sql" value="false"/>

Derby

Out-

of-

the-

Box

31

 <property name="hibernate.dialect"

 value="org.hibernate.dialect.DerbyDialect"/>

 </properties>

 </persistence-unit>

</persistence>

For OpenJPA the persistence.xml looks like

<?xml version="1.0" encoding="UTF-8"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"

 version="1.0">

 <persistence-unit name="juddiDatabase" transaction-type="RESOURCE_LOCAL">

 <provider>org.apache.openjpa.persistence.PersistenceProviderImpl</

provider>

 <non-jta-data-source>java:comp/env/jdbc/JuddiDS</non-jta-data-source>

 <!-- entity classes -->

 <class>org.apache.juddi.model.Address</class>

 <class>org.apache.juddi.model.AddressLine</class>

 ...

 <class>org.apache.juddi.model.UddiEntity</class>

 <class>org.apache.juddi.model.UddiEntityPublisher</class>

 <properties>

 <property name="openjpa.jdbc.SynchronizeMappings"

 value="buildSchema(SchemaAction='add')"/>

 <property name="openjpa.Log" value="DefaultLevel=WARN, Tool=INFO"/>

 <property name="openjpa.jdbc.UpdateManager" value="operation-order"/>

 <property name="openjpa.jdbc.DBDictionary" value="derby"/>

 <!-- dialects: derby, postgres, mysql, oracle, sybase, sqlserver

 for a complete list check the OpenJPA documentation -->

 <property name="openjpa.RuntimeUnenhancedClasses" value="warn"/>

 <property name="openjpa.Compatibility"

 value="CheckDatabaseForCascadePersistToDetachedEntity=true"/>

 </properties>

 </persistence-unit>

</persistence>

In this case we reference a jta-data-source called java:comp/env/jdbc/JuddiDS. Datasource

deployment is Application Server specific. If you are using Tomcat, then the datasource is defined

in juddi/META-INF/context.xml which by default looks like

<?xml version="1.0" encoding="UTF-8"?>

<Context>

 <WatchedResource>WEB-INF/web.xml</WatchedResource>

 <Resource name="jdbc/JuddiDS" auth="Container"

 type="javax.sql.DataSource" username="" password=""

Switching

to

another

Database

32

 driverClassName="org.apache.derby.jdbc.EmbeddedDriver"

 url="jdbc:derby:juddi-derby-test-db;create=true"

 maxActive="8"

 />

</Context>

By default the juddiv3.war is configured to be used on Tomcat using OpenJPA. However the

download bundle lets you specify different target platforms resulting in a different setup. In all

cases it will point to the embedded Derby database.

4.3.2. Switching to another Database

We recommend switching to an enterprise-level database before going to production. Most JPA

providers support a large number of Databases and switching to another database is achieved by

updating the configuration settings in both the persistence.xml and datasource files. The recipe is:

• change the database dialect in the persistence.xml.

• change the database connection information in the datasource.

• add the database specific driver to your classpath.

• in some cases (Oracle is one such case) you will need to use sequences for the ID generation,

in this case you will need an orm.xml file. We ship a orm.xml.example along side the

persistence.xml. Rename this file and update this to your liking.

Some examples for specific databases are given below.

Warning

Tomcat copies the context.xml to <tomcat>/conf/CATALINA/localhost/juddiv3.xml,

and if you update the context.xml it may not update this copy. You should simply

delete the juddiv3.xml file after updating the context.xml.

4.3.3. Switch to MySQL on Tomcat using OpenJPA

Check if you have are using Hibernate of OpenJPA, by looking at the jars in the juddiv3.war/WEB-

INF/lib. Edit the dialect in the persistence.xml For OpenJPA:

<property name="openjpa.jdbc.DBDictionary" value="mysql"/>

Next edit the datasource. For tomcat you need to update the juddiv3/META-INF/context.xml which

should look something like

<?xml version="1.0" encoding="UTF-8"?>

<Context>

Switch

to

Postgres

on

Tomcat

using

OpenJPA

33

 <WatchedResource>WEB-INF/web.xml</WatchedResource>

 <Resource name="jdbc/JuddiDS" auth="Container"

 type="javax.sql.DataSource" username="root" password=""

 driverClassName="com.mysql.jdbc.Driver"

 url="jdbc:mysql://localhost:3306/juddiv3"

 maxActive="8"/>

</Context>

Finally you need to add the MySQL mysql driver (i.e. The mysql-connector-java-5.1.6.jar) to the

classpath. Note that this jar may already by in the tomcat/lib directory, in which case you can

move on to the step and create the mysql juddiv3 database. To create a MySQL database name

juddiv3 use

mysql> create database juddiv3

and finally you probably want to switch to a user which is a bit less potent then root, and delete

the <tomcat>/conf/CATALINA/localhost/juddiv3.xml file.

4.3.4. Switch to Postgres on Tomcat using OpenJPA

Check if you have are using Hibernate of OpenJPA, by looking at the jars in the juddiv3.war/WEB-

INF/lib. Edit the dialect in the persistence.xml For OpenJPA:

<property name="openjpa.jdbc.DBDictionary" value="postgres"/>

Next edit the datasource. For tomcat you need to update the juddiv3/META-INF/context.xml which

should look something like

<?xml version="1.0" encoding="UTF-8"?>

<Context>

 <WatchedResource>WEB-INF/web.xml</WatchedResource>

 <Resource name="jdbc/JuddiDS" auth="Container"

 type="javax.sql.DataSource" username="juddi" password="juddi"

 driverClassName="org.postgresql.Driver"

 url="jdbc:postgresql://localhost:5432/juddi"

 maxActive="8"/>

</Context>

To create a MySQL database name juddi use

postgres= CREATE USER juddi with PASSWORD 'password';

postgres= CREATE DATABASE juddi;

postgres= GRANT ALL PRIVILEGES ON DATABASE juddi to juddi;

Be sure to have postgresql-8.3-604.jdbc4.jar to the classpath. Note that this jar may already by

in the tomcat/lib directory, in which case the final step is to delete the <tomcat>/conf/CATALINA/

localhost/juddiv3.xml file.

Switch

to

Postgres

on

JBoss

using

Hibernate

34

4.3.5. Switch to Postgres on JBoss using Hibernate

This was written from a JBoss - jUDDI perspective. Non-JBoss-users may have to tweak this a

little bit, but for the most part, the files and information needed is here. Logged in as postgres

user, access psql:

postgres= CREATE USER juddi with PASSWORD 'password';

postgres= CREATE DATABASE juddi;

postgres= GRANT ALL PRIVILEGES ON DATABASE juddi to juddi;

Note, for this example, my database is called juddi, as is the user who has full privileges to the

database. The user juddi has a password set to password. Next edit the juddi-ds.xml datasource

file with the settings for the postgres connection info:

<datasources>

 <local-tx-datasource>

 <jndi-name>JuddiDS</jndi-name>

 <connection-url>jdbc:postgresql://localhost:5432/juddi</connection-

url>

 <driver-class>org.postgresql.Driver</driver-class>

 <user-name>juddi</user-name>

 <password>password</password>

 <!-- sql to call when connection is created. Can be anything,

 select 1 is valid for PostgreSQL

 <new-connection-sql>select 1</new-connection-sql>

 -->

 <!-- sql to call on an existing pooled connection when it is

 obtained

 from pool. Can be anything, select 1 is valid for PostgreSQL

 <check-valid-connection-sql>select 1</check-valid-connection-sql>

 -->

 <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml -->

 <metadata>

 <type-mapping>PostgreSQL 8.0</type-mapping>

 </metadata>

 </local-tx-datasource>

</datasources>

In persistence.xml, reference the correct JNDI name of the datasource and remove the derby

Dialect and add in the postgresql Dialect, for Hibernate on JBoss use:

<jta-data-source>java:comp/env/jdbc/JuddiDS</jta-data-source>

...

<property name="hibernate.dialect"

 value="org.hibernate.dialect.PostgreSQLDialect"/>

Be sure to have postgresql-8.3-604.jdbc4.jar in the lib folder.

Switch

to

Oracle

on

Tomcat

using

Hibernate

35

4.3.6. Switch to Oracle on Tomcat using Hibernate

To switch over to Oracle you need to add the oracle driver (i.e. the_classes12.jar_) to the classpath

and you will need to edit the persistence.xml

<property name="hibernate.dialect"

 value="org.hibernate.dialect.Oracle10gDialect"/>

To create a Oracle database name juddiv3 with the ultimate in minimalism use

sqlplus> create database juddiv3;

then you probably want to switch to a user which is a bit less potent then root and set the

appropriate password, and delete the <tomcat>/conf/CATALINA/localhost/juddiv3.xml

4.3.6.1. Changing the Oracle Sequence name

If you are using Hibernate as a persistence layer for jUDDI, then Oracle will generate a default

sequence for you ("HIBERNATE_SEQUENCE"). If you are using hibernate elsewhere, you may

wish to change the sequence name so that you do not share this sequence with any other

applications. If other applications try to manually create the default hibernate sequence, you may

even run into situations where you find conflicts or a race condition.

The easiest way to handle this is to create an orm.xml file and place it within the classpath

in a META-INF directory, which will override the jUDDI persistence annotations and will allow

you to specify a specific sequence name for use with jUDDI. The orm.xml.example specifies a

"juddi_sequence" sequence to be used with jUDDI. Rename this file and update it to your liking.

4.3.7. Switch to HSQL on Tomcat using Hibernate

First make sure you have a running hsqldb. For a standalone server startup use:

java -cp hsqldb.jar org.hsqldb.server.Server --port 1747 --database.0

 file:juddi --dbname.0 juddi

Next, connect the client manager to this instance using:

java -classpath hsqldb.jar org.hsqldb.util.DatabaseManagerSwing --driver

 org.hsqldb.jdbcDriver --url jdbc:hsqldb:hsql://localhost:1747/juddi -user

 sa

and create the juddi user:

CREATE USER JUDDI PASSWORD "password" ADMIN;

CREATE SCHEMA JUDDI AUTHORIZATION JUDDI;

SET DATABASE DEFAULT INITIAL SCHEMA JUDDI;

ALTER USER juddi set initial schema juddi;

Switch

to

other

db

36

From now on, one can connect as JUDDI user to that database and the database is now ready

to go. To switch jUDDI over to HSQL you need to add the hsql driver (i.e. The hsqldb.jar) to the

classpath and you will need to edit the persistence.xml

<property name="hibernate.dialect"

 value="org.hibernate.dialect.HSQLDialect"/>

and the datasource. For tomcat you the context.xml should look something like

<?xml version="1.0" encoding="UTF-8"?>

<Context>

 <WatchedResource>WEB-INF/web.xml</WatchedResource>

 <!-- HSQL data source -->

 <Resource name="jdbc/JuddiDS" auth="Container"

 type="javax.sql.DataSource" username="JUDDI" password="password"

 driverClassName="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:hsql://localhost:1747/juddi"

 maxActive="8"/>

</Context>

4.3.8. Switch to other db

If you use another database, please document, and send us what you had to change to make it

work and we will include it here.

4.3.9. Override persistence properties in the juddiv3.xml

The juddiv3.xml file can be externalized; if you give the path of juddiv3.xml in the JVM args, the

juddiv3.xml will not be picked up from the WAR. To use this set the juddi.propertiesFile to a location

of your configuration file. This allows the user to change the jUDDI properties without having to

open up the juddiv3.war file. For this use case it makes sense that also persistence properties

can be overridden as well in the juddiv3.xml file. The following properties can be set:

Table 4.1. Hibernate properties that can be referenced in the juddiv3.xml file

property name description example value

persistenceProvider JPA Implementation Hibernate

hibernate.connection.datasourcedatasource name java:/jdbc/JuddiDS

hibernate.hbm2ddl.auto hibernate to ddl setting java:/jdbc/JuddiDS

hibernate.default_schema Schema name JuddiSchema

hibernate.dialect DataBase vendor name org.hibernate.dialect.DB2Dialect

4.4. Logging

The jUDDI codebase uses the commons-logging-api, and log4j as the default logging

implementation. The juddiv3/WEB-INF/classes/commons-logging.properties sets the logging to

Administering

the

GUI

(juddi-

gui.war)

37

log4j. The default log4j configuration logs to a juddi.log file in the tomcat/logs directory. The log4j

configuration lives in the juddiv3/WEB-INF/classes/log4j.properties file, which is referenced in the

web.xml

<context-param>

 <param-name>log4jConfigLocation</param-name>

 <param-value>/WEB-INF/classes/log4j.properties</param-value>

</context-param>

The commons-logging and log4j jars are shipped in the juddiv3/WEB-INF/lib directory.

If you are using CXF for the webservice stack you can log the request/response xml by adding

log4j.category.org.apache.cxf=INFO

to your log4j.properties and the cxf.xml file should contains this:

<cxf:bus>

 <cxf:features>

 <cxf:logging/>

 </cxf:features>

</cxf:bus>

The jUDDI beans.xml specifies the location of this file at META-INF/cxf/cxf.xml.

4.5. Administering the GUI (juddi-gui.war)

There are a few things worth mentioning for administering the jUDDI Graphical User Interface.

The first is user authentication, which is covered in the authentication chapter. The other the the

Digital Signature Applet. This applet enables users to digitally signed UDDI entities via the GUI.

There are a number of requirements in order for this to work.

• The applet must be digitally signed. It is recommended that this signed by the administrator

using the SSL certificate of the jUDDI instance. If it is not signed, it may not be able to digital

certificates.

• The Oracle Java browser plugin must be installed. For details on this, visit Oracle’s website.

• The end user must have a digital certificate installed that is accessible to the browser. On

Windows computers, this is supported by Internet Explorer, Opera and Chrome which use the

Windows Certificate Store (Start > Run > MMC, Add Certificates). Firefox uses its own certificate

store. On MacOS, Safari uses the Mac Keychain.

4.6. Task: Signing the Digital Signature Applet jar file

jarsigner -keystore your.keystore -storepass yourpass -keypass keypass

 <pathto>/juddi-gui.war/applets/juddi-gui-dsig-all.jar

Administrating

your

jUDDI

Instance

using

the

Administrative

Console

38

Note: Jarsigner comes with most JDKs and has many command line options.

4.7. Administrating your jUDDI Instance using the

Administrative Console

Your instance of the jUDDI (juddiv3.war) can be managed via the administration console. It can

be access url the following URL:

http://localhost:8080/juddiv3/admin

By default, only users with the role "uddiadmin" are allowed to access this page. In addition, it

must be accessed from the same computer hosting juddiv3.war (this can be changed if needed).

When accessing the URL, you should be prompted for login via username/password (this can

also be changed to another mechanism).

After authenticating, you will be prompted with a very similar interface to the juddi-gui.war. From

here, you can perform a number of tasks.

• Access Status and Statistics of jUDDI

• Configure jUDDI (juddiv3.war)

• Access the jUDDIv3 API, which provides a number of administrative tasks and functions

(requires an additional login)*

*Why is there another login required for the jUDDIv3 API functions?

The answer is because the admin console will be directly accesses a web service and it requires

a user account with juddi admin rights. This may be the same username you use to access the

admin console (juddiv3.war/admin) but unfortunately, this double login is unavoidable.

4.8. Configure jUDDI

From the browser, it is possible to configure jUDDI’s web services via the web browser. All of the

settings available from the chapter on configuring jUDDI can be set there.

4.8.1. Enabling Remote Access

The jUDDI Configuration page by default is only accessible via the same host that is hosting the

server. To enable remote access, change the setting

config/props/configLocalHostOnly=true

To false.

Enabling

Remote

Access

39

Figure 4.1. jUDDI Server Configuration Page.

Monitoring

the

Status

and

Statistics

40

4.9. Monitoring the Status and Statistics

The Statistics and Status page provides valuable information to administrators and developers

looking to trouble shoot or debug problems with jUDDI.

4.9.1. Statistics

The Statistics page provides you with access to usage counts and time spent processing on each

method of each service that jUDDI provides.

Tip

This information can be pulled and is available in JSON encoded data from the

following URL: http://localhost:8080/juddiv3/admin/mbeans.jsp

http://localhost:8080/juddiv3/admin/mbeans.jsp

Statistics

41

Figure 4.2. jUDDI Server Statistics.

Status

42

or you can hook up the jconsole to look at the jUDDI mbeans

Figure 4.3. jUDDI MBeans.

4.9.2. Status

The Status page gives you the former "Happy jUDDI" page from version 2 of jUDDI.

Status

43

Figure 4.4. jUDDI Server Status.

Accessing

the

jUDDIv3

API

44

4.10. Accessing the jUDDIv3 API

The jUDDI API is a web service that extends the UDDI specification. It provides various functions

for both configuring the jUDDI server and for performing administrative functions, such as

authorizing a new username as a publisher, user rights assignment and so on. This page will let

you access the functions from the web browser.

Tip

You must authenticate using the top right hand side login/password box in order

to use this.

Figure 4.5. jUDDI API.

4.11. Security Guidance

This guide contains general security guidelines to ensure that your jUDDI server and jUDDI Client

based application are relatively safe and to prevent authorized users.

This section is broken down into guidance for the jUDDI server and for the jUDDI Client

4.11.1. jUDDI Server

• Always use SSL or TLS for connections to and from the jUDDI server, especially connections

where authentication is used. Use encrypted connections to the database server when possible.

client configs (uddi.xml), database (juddiv3/WEB-INF/classes/META-INF/persistence.xml)

jUDDI

Client

(and

developers)

45

• If the juddi-gui web app is not on the same server as the juddiv3 web services web app, use

SSL or TLS. (juddi-gui/WEB-INF/classes/META-INF/uddi.xml)

• Use UDDI Digital Signatures where appropriate. Enable all validation

options. Java/.NET Clients + juddi-gui, uddi.xml uddi/client/signatures,

checkTimestamps,checkTrust,checkRevocationCRL

• Require authentication for Inquiry API. (config/juddi/auth/Inquiry=true)

• Use a LDAP user store and set passwords to expire regularly. Enforce the usage of

strong passwords of sufficient length and SSL for LDAP connections. (config/juddi/auth/token/

authenticator)

• Encrypt all stored credentials (database, key stores, email, etc) with the highest possible

encryption available. (config/juddi/cryptor=org.apache.juddi.v3.client.cryptor.AES256Cryptor or

AES128)

• Configure Auth Tokens to expire with relatively short intervals. This should meet all automatic

logout requirements and help reduce the risk that an intercepted auth token can’t be reused by

a 3rd party. (config/juddi/auth/token/Expiration) and (config/juddi/auth/token/Timeout)

• Configure Auth Tokens to require Same IP Enforcement. This is a mitigation factor for when a

token is intercepted and attempted to be reused from another source. (config/juddi/auth/token/

enforceSameIPRule=true)

• Configure Custody Transfer Tokens to expire with relatively short intervals. (config/juddi/

transfer/expiration/days)

• Disable sending authentication tokens to subscription notifications (config/juddi/notification/

sendAuthTokenWithResultList=false)

• If you’re using the replication services, configure your application server to use mutual

certification authentication for that deployment (per the specification’s recommendation).

4.11.2. jUDDI Client (and developers)

• Never log auth tokens. Protect it as if it was a password

• Encrypt all stored credentials (key stores, UDDI credentials, etc) with the highest possible

encryption available (uddi.xml)

• Discard auth tokens when they are no longer needed.

4.11.3. jUDDI GUI (Web user interface)

• Enable automatic logouts (WEB-ING/classes/META-INF/uddi.xml)

• All cached credentials are encrypted in the session tokens using an AES key that is generated

at boot up time of the juddi-gui instance.

Backups,

Upgrading

and

Data

Migration

46

• Use SSL or TLS when connecting using your web browser to juddi-gui.

• The juddi-gui uses cookies to store user preferences, such as language and the current node.

• The juddi-gui makes heavy use of JavaScript using Jquery and JqueryUI. Without a JavaScript

enabled browser that supports AJAX, the juddi-gui will not be functional. This usually implies

Firefox 1.6 or higher, IE 6, Chrome/Chromium (nearly all versions), Opera v8 or higher, and

Safari v2 or higher.

• The juddi-gui uses a Java applet that is used for Digital Signature support. This runs within

your web browser. The Java plugin for your web browser must be enabled in order to use this

functionality. In addition, the applet itself must be digitally signed (usually performed by the

administrator, see article on this).

• The juddi-gui has built in validation for digital signatures. This requires a trusted key store.

Ensure that the passwords are encrypted using the highest available crypto class and that the

validation settings are enabled.

• The juddi-gui has a settings pages for altering the uddi.xml configuration file. By default, this

is only accessible from the same machine running juddi-gui (i.e. localhost). This behavior can

be changed by either using the setting page from localhost or by manually editing the uddi.xml

page. Unless required, the recommended setting is to prevent remote configuration changes.

If the settings page isn’t required, it can be removed.

• The juddi-gui has a settings page that is password protected to prevent unauthorized changes.

Use the strongest available mechanism to protect credentials. The default configuration is for

HTTP BASIC. It is recommended to use this with SSL/TLS and/or switch to DIGEST based

authentication. If the settings page isn’t required, it can be removed.

4.12. Backups, Upgrading and Data Migration

There are several different strategies for managing your jUDDI backups.

4.12.1. Database Backups

Database backups are vendor specific and are effective for backup/restore to a similar or exact

jUDDI version reinstall.

4.12.2. Config Backup

Aside from database backups, you should also make backup copies of all jUDDI configuration

files and any files that you have customized to meet your operational needs.

4.13. Upgrading jUDDI

Sometimes, the jUDDI development team has no choice but to alter the database schema. In

many cases, OpenJPA or Hibernate (both Java Persistence API provides) will automatically alter

database columns when a new version is installed. In some cases, there may actually be data loss.

Scaling

jUDDI

and

Federation

47

Tip

Check the jUDDI distribution notes before attempting an upgrade.

Important

Always perform a database level backup of your instance before attempting the

upgrade.

4.14. Scaling jUDDI and Federation

The capabilities and components provided by jUDDI are designed to scale. The following will

describe the options and known limitations of jUDDI.

4.14.1. Scaling the jUDDI Services (multiple servers)

The jUDDI web services (juddiv3.war) is designed to be scaled to multiple servers in a number of

ways. The following sub sections outline the available options.

4.14.1.1. Scaling using a common database

The first and simplest mechanism is for the instances of juddiv3.war to share the same database.

All of jUDDI’s database calls are transactional SQL, meaning that concurrent changes will

function just fine from multiple concurrent users. Each instance of juddiv3.war must point to the

same database and must use the same Node ID and configuration settings. See the Database

Configuration Chapter for more information.

4.14.1.2. Scaling using Subscriptions

The second mechanism is to use the Subscription API to import data and updates from a remote

registry. Unfortunately, this scenario isn’t quite yet supported for jUDDI, but may be in a future

release.

4.14.1.3. Replication API

The third mechanism is the Replication API, which is part of the OASIS UDDIv3 specification.

Since version 3.3, jUDDI provides support for synchronizating UDDI servers using the techniques

described in the specification as Replication. See the Replication Services chapter for additional

information,

4.14.2. Limitations of jUDDI

jUDDI’s web services have no explicit upper bound on the volume of businesses and services

registered. Load testing has shown that at least 10,000 are supported for each category. The

Limitations

of

jUDDI

48

upper limit is more of a function of both the underlying database implementation and hardware

(free disk space). In either case, the likelihood of hitting the limit is low for most instances. If

you happen to run into scaling issues, please file a bug report at JUDDI’s JIRA site at: https://

issues.apache.org/jira/browse/JUDDI

https://issues.apache.org/jira/browse/JUDDI
https://issues.apache.org/jira/browse/JUDDI

49

Chapter 5. jUDDI Server

Configuration (juddiv3.xml)
jUDDI will look for a juddiv3.xml file on the root of the classpath. In the juddiv3.war you can

find it in juddiv3.war/WEB_INF/classes/juddiv3.xml.

Since 3.2 the jUDDI server now uses an XML file for configuration. Previous

 versions uses a properties file.

Important

When referring to configuration properties, we are really referencing the XPath to

specified setting.

5.1. Authentication

Table 5.1. Authentication properties that can be referenced in the

juddiv3.xml file

Property Name Description Required Default Value or

[Example Value]

juddi/auth/

authenticator/class

The jUDDI

authenticator class

to use. See Chapter

<add ref> of the

Userguide for the

choices provided.

N org.apache.juddi.v3.auth.JUDDIAuthenticator

juddi/auth/Inquiry This flag

determines whether

authentication

(the presence of a

getAuthToken) is

required on queries

invoking the Inquiry

API. By default,

jUDDI sets this to

false for ease of use.

N false

juddi/auth/token/

Timeout

Time in minutes to

expire tokes after

inactivity.

N 15

Startup

50

Property Name Description Required Default Value or

[Example Value]

juddi/auth/token/

Expiration

As of 3.1.5 Duration

of time for tokens to

expire, regardless of

inactivity.

N 15

juddi/auth/token/

enforceSameIPRule

As of 3.2 This setting

will enable or disable

the auth token check

to ensure that auth

tokens can only be

used from the same

IP address that they

were issued to..

N true

juddi/auth/

authenticator@useAuthToken

Indicates that the

authenticator is use

requires a UDDI auth

token. Set to false

when using HTTP

based authenticators

N true

5.2. Startup

Table 5.2. Startup properties that can be referenced in the juddiv3.xml file

Property Name Description Required Default Value or

[Example Value]

juddi/server/baseurl Token that can

be accessed in

accessPointURLs

and resolved at

runtime. Currently

this is only used

during the Installation

process (seeding root

data)

N http://localhost:8080

juddi/root/publisher The username for the

jUDDI root publisher.

This is usually just set

to "root".

N root

juddi/seed/always Forces seeding of

the jUDDI data. This

will re-apply all files

N false

http://localhost:8080

Startup

51

Property Name Description Required Default Value or

[Example Value]

with the exception

of the root data files.

Note that this can

lead to losing data

that was added to the

entities that are re-

seeded, since data is

not merged.

juddi/server/name This token is

referenced in the

install data. Note

that you can use any

tokens, and that their

values can be set

here or as system

parameters..

N false

juddi/server/port This token is

referenced in the

install data. Note

that you can use any

tokens, and that their

values can be set

here or as system

parameters..

N false

juddi/nodeId The Node ID uniquely

identifies this server.

Use caution when

changing the Node ID

after jUDDI has been

started, you may not

be able to edit any

existing entities! ..

N uddi:juddi.apache.org:node1

juddi//load/install/data This property allows

you to cancel loading

of the jUDDI install

data.

N false

juddi/locale The default local to

use. This currently is

not used.

N en_US

Email

52

Property Name Description Required Default Value or

[Example Value]

juddi/

operatorEmailAddress

The UDDI Operator

Contact Email

Address. This

currently is not used.

N admin@juddi.org

juddi/

persistenceunit.name

The persistence

name for the jUDDI

database that is

specified in the

persistence.xml file.

N juddiDatabase

juddi/configuration/

reload/delay

The time in

milliseconds in which

juddiv3.xmlis polled

for changes.

N 5000

Caution

Take caution in changing the jUDDI Node ID. (Updated at 3.3) jUDDI can now

change Node IDs via the Admin console. However care must be taken to prevent

changes to data while the rename is in progress. It is recommended to use the

Admin console to change the Node ID. It will automatically update the database

and the juddiv3.xml configuration file.

5.3. Email

As of 3.1.5, jUDDI supports Email delivery options for Subscription API functions. Email

properties can be referenced in the juddiv3.xml file. Starting with 3.2.1, jUDDI can now

send a test email via the juddiv3.war/admin console.

Property Name Description Required Default Value or

[Example Value]

juddi/mail/smtp/from The Operator’s Email

address

Y [jUDDI@example.org]

juddi/mail/smtp/host The hostname of the

SMTP server

Y [localhost]

juddi/mail/smtp/port The portname of the

SMTP server

Y [25]

juddi/mail/smtp/

socketFactory.class

If set, specifies the

name of a class

that implements the

javax.net.SocketFactory

N

Email

53

Property Name Description Required Default Value or

[Example Value]

interface. This class

will be used to create

SMTP sockets.

juddi/mail/smtp/

socketFactory/

fallback

If set to true, failure

to create a socket

using the specified

socket factory class

will cause the socket

to be created using

the java.net.Socket

class. Defaults to

true.

N true

juddi/mail/smtp/

starttls/enable

f true, enables

the use of the

STARTTLS command

(if supported by the

server) to switch

the connection to

a TLS-protected

connection before

issuing any login

commands. Note that

an appropriate trust

store must configured

so that the client will

trust the server’s

certificate. Defaults to

false.

N false

juddi/mail/smtp/

socketFactory/port

Specifies the port

to connect to when

using the specified

socket factory. If not

set, the default port

will be used.

N [465]

juddi/mail/smtp/auth If true, attempt to

authenticate the

user using the AUTH

command. Defaults to

false.

N [false]

Query

Properties

54

Property Name Description Required Default Value or

[Example Value]

juddi/mail/smtp/user Username used to

authenticate to the

SMTP server

Y, if juddi/mail/smtp/

auth is true

[juddi@apache.org]

juddi/mail/smtp/

password

Username used to

authenticate to the

SMTP server

Y, if juddi/mail/smtp/

auth is true

[secret]

juddi/mail/smtp/

password@encrypted

If the password

is encrypted, the

setting juddi/cryptor

is the Cryptographic

provider used to

decrypt at runtime.

Y, if juddi/mail/smtp/

auth is true

false

5.4. Query Properties

Table 5.3. Query properties that can be referenced in the juddiv3.xml file

Property Name Description Required Default Value or

[Example Value]

juddi/

maxBusinessesPerPublisher

The maximum

number of UDDI

Businesses that

can be registered

per publisher. A

value of -1 indicates

any number of

businesses is allowed

(These values can

be overridden at the

individual publisher

level)

N -1

juddi/

maxServicesPerBusiness

The maximum

number of UDDI

BusinessServices

allowed per Business.

A value of -1

indicates any number

of artifacts is valid

(These values can be

overridden at the

N -1

Query

Properties

55

Property Name Description Required Default Value or

[Example Value]

individual publisher

level).

juddi/

maxBindingsPerService

The maximum

number of UDDI

TemplateBindings

allowed per

BusinessService. A

value of -1 indicates

any number of

artifacts is valid

(These values can

be overridden at the

individual publisher

level).

N -1

juddi/

maxTModelsPerPublisher

The maximum

number of TModels

allowed per publisher.

A value of -1

indicates any number

of artifacts is valid

(These values can

be overridden at the

individual publisher

level).

N -1

juddi/maxInClause The maximum

number of "IN"

clause parameters.

Some RDMBS

limit the number of

parameters allowed in

a SQL "IN" clause.

Y [1000]

juddi/

maxNameElementsAllowed

The maximum

name size and

maximum number

of name elements

allows in several of

the FindXxxx and

SaveXxxx UDDI

functions

N [5]

RMI

Proxy

56

Property Name Description Required Default Value or

[Example Value]

juddi/

maxNameLength

The maximum

name size of name

elements

N [255]

juddi/maxRows The maximum

number of rows

returned in a find*

operation. Each

call can set this

independently, but

this property defines

a global maximum.

This is related to the

maxInClause setting

(the same?).

N 1000

5.5. RMI Proxy

These properties are used to bring up RMI server socket. The settings allow for registering

this service to JNDI. RMI Proxy properties that can be referenced in the juddiv3.xml file and

is only used by RMITransport.

Property Name Description Required Default Value or

[Example Value]

juddi/proxy/factory/

initial

JNDI Contect Facory N [org.jnp.interfaces.NamingContextFactory]

juddi/proxy/provider/

url

JNDI Provider

Address

N [jnp://localhost:1099]

juddi/proxy/factory/url/

pkg

JNDI Naming

Convention

N [org.jboss.naming]

5.6. Key Generation and Cryptography

Table 5.4. UDDI Key generation properties that can be referenced in the

juddiv3.xml file.

Property Name Description Required Default Value or

[Example Value]

juddi/cryptor jUDDI Cryptor

implementation class

that jUDDI will use to

N org.apache.juddi.cryptor.DefaultCryptor

Subscription

57

Property Name Description Required Default Value or

[Example Value]

encrypt and decrypt

password settings

juddi/keygenerator Key generator

implementation that

jUDDI will use to

create UDDI keys if

no key is passed in

by the user.

N org.apache.juddi.keygen.KeyGenerator

juddi/uuidgen UUID generator

implementation that

jUDDI will use to

create UUIDs.

N org.apache.juddi.uuidgen.DefaultUUIDGen

5.7. Subscription

Table 5.5. Subscription properties that can be referenced in the juddiv3.xml

file.

Property Name Description Required Default Value or

[Example Value]

juddi/subscription/

expiration/days

Days before a

subscription expires

N [30]

juddi/subscription/

chunkexpiration/

minutes

Minutes before

a "chunked"

subscription call

expires

N [5]

juddi/notification/

interval

Specifies the

interval at which the

notification timer

triggers. This is the

upper boundary

set by the registry.

Between the user

defined endDate of a

Subscription and this

value, the registry will

pick the earliest date.

(in ms)

N 3000000

juddi/notification/start/

buffer

Specifies the amount

of time to wait before

N 20000

Subscription

58

Property Name Description Required Default Value or

[Example Value]

the notification timer

initially fires. (in ms)

juddi/notification/

acceptableLagtime

Specifies the amount

of time (in ms) from

which to determine

if the server is

overload and to

skip notifications.

Notifications during

this cycle will not be

repeated (i.e. never

be delivered). (in ms)

N 10000

juddi/notification/

maxTries

Specifies the

number of times to

attempt the delivery

of messages to

subscribers.

N 3

juddi/notification/

maxTriesResetInterval

Once the maximum

delivery attempts

have been made, the

server will add that

endpoint to an ignore

list, which is reset

every N ms.

N 600000

juddi/notification/

sendAuthTokenWithResultList

Sends a valid

authentication token

for the owning user

of the subscription

in the subscription

notification result

message. Unless it is

specifically needed,

this is recommended

to be set to false.

N false

Custody

Transfer

59

5.8. Custody Transfer

Table 5.6. Transfer properties that can be referenced in the juddiv3.xml file.

Property Name Description Required Default Value or

[Example Value]

juddi/transfer/

expiration/days

Days before a

transfer request

expires.

N [3]

5.9. Validation

Table 5.7. These settings are for validating the data that users store in jUDDI.

They can be referenced in the juddiv3.xml file.

Property Name Description Required Default Value or

[Example Value]

juddi/validation/

enforceReferentialIntegrity

As of 3.1.5 This

setting will force

referential integrity for

all tModels (except

keyGenerators),

category bags,

bindingTemplate/

AccessPoint/

hostingRedirector

(referencing

another host),

tModelInstanceParms

and anything else

that references a

KeyName default

value is true. Set to

false for backwards

compatibility or for a

more lax registry.

N [true]

juddi/validation/

rejectInvalidSignatures/

enable

Enables or Disables

the validation of

signatures when a

publisher attempts to

save an entity

N false

Logging

60

Property Name Description Required Default Value or

[Example Value]

juddi/validation/

rejectInvalidSignatures/

enable/trustStorePath

Path to the trust

store. Can be

overridden via

system properties.

If not specified, the

Windows trust store

will be used, else

the default JRE trust

store will be used.

N [truststore.jks]

juddi/validation/

rejectInvalidSignatures/

trustStoreType

The type of store to

use

N JKS

juddi/validation/

rejectInvalidSignatures/

trustStorePassword

The clear text or

encrypted password

to the trust store

N

juddi/validation/

rejectInvalidSignatures/

trustStorePassword@isPasswordEncrypted

True/False N false

juddi/validation/

rejectInvalidSignatures/

trustStorePassword@cryptoProvider

A cryptographic

provider, representing

the one that was used

to encrypt

 juddi/validation/

rejectInvalidSignatures/

checkTimestamps

If true, certificates are

checked against the

time validity

N false juddi/validation/

rejectInvalidSignatures/

checkTrust

If true, the certificates

trust chain is

validated against the

trust store

N false juddi/validation/

rejectInvalidSignatures/

checkRevocationCRL

5.10. Logging

These properties are used to enable additional logging capabilities. Logging properties

that can be referenced in the juddiv3.xml file.

Property Name Description Required Default Value or

[Example Value]

juddi/logging/

logInquirySearchPayloads

Enables request

payload logging for

the Inquiry Find apis

N false

Performance

61

5.11. Performance

These properties are used to enable or disable certain capabilities based on performance

considerations. Perofrmance properties are referenced in the juddiv3.xm file.

Property Name Description Required Default Value or

[Example Value]

juddi/performance/

enableFindBusinessTModelBagFiltering

UDDI defines a

mechansim to

filter findBusiness

relates based on

tModelInstanceInfo

within their service’s

binding templates.

This is an expensive

operation and will

cause significant

performance

degredation on

larger registries. For

spec complliance,

it should be set to

true. We suspect

it’s not a commonly

used feature and

recommend setting

this to false.

N true

5.12. Replication

These properties are used to tweak the replication service capabilities. These properties

are referenced in the juddiv3.xml file.

Property Name Description Required Default Value or

[Example Value]

juddi/replication/

getChangeRecordsMax

The maximum

number of records

to return from a

getChangeRecord

request

N 100

juddi/replication/start/

buffer

Specifies the amount

of time to wait before

the replication timer

initially fires. (in ms)

N 5000

Deploying

two

or

more

jUDDI

server

on

the

same

application

server

62

Property Name Description Required Default Value or

[Example Value]

juddi/replication/

interval

Specifies the

interval at which

the replication timer

triggers (in ms).

N 5000

5.13. Deploying two or more jUDDI server on the same

application server

It is possible to deploy one or more jUDDI servers to the same application

server. You will need copy the juddiv3.war archive (let’s say you copied it

to juddiv3a.war), and change the following settings to have it connect to a

different database:

1. edit the juddiv3a/META-INF/context.xml (and conf/Catalina/localhost/juddiv3a.xml)

to use the jdbc/JuddiADS datasource, and add a to the url: url="jdbc:derby:target/juddi-

derby-test-db-v3a;create=true"

2. edit the juddiv3a/WEB-INF/classes/META-INF/persistence.xml to use <non-jta-data-

source>java:comp/env/jdbc/JuddiADS and persistence-unit name="juddiADatabase"

3. edit the juddiv3a/WEB-INF/classes/juddiv3.xml to have

<persistenceunit><name>juddiADatabase</name></persistenceunit>

This will create a new jUDDI server under the http://localhost:8080/juddiv3a url which connects

to the juddi-derby-test-db-v3a Derby database.

5.14. jUDDI GUI Configuration

The jUDDI GUI (juddi-gui.war) has one place for configuration settings, the jUDDI Client config file.

5.15. jUDDI Client uddi.xml Settings

Defined in WEB-INF/classes/META-INF/uddi.xml, there are many settings to configure. All of

these are clearly defined by the jUDDI Client Configuration Guide. The juddi-gui, uses things a bit

differently, so here are the relevant parts to use. Note: this is xpath notation.

• uddi/client/nodes/properties, not used

• uddi/client/clerks, not used

• uddi/client/nodes/node, all URLs except juddiApiUrl (not used)

• uddi/client/signature, all validation related settings

• uddi/client/subscriptionCallbacks, not used

http://localhost:8080/juddiv3a

Encryption

Keys

63

• uddi/client/XtoWsdl, not used

In addition, there a special section added just for the juddi-gui.war

Table 5.8. jUDDI GUI Configuration

Property Name Description Required Default Value or

[Example Value]

uddi/config/props/

authtype

This controls the

authentication mode

to connect to a

UDDI server. Most

implementations

of UDDI use the

security service,

however others

use HTTP based

authentication. In this

case, us the value

of HTTP, otherwise

UDDI_AUTH

Y UDDI_AUTH

uddi/config/props/

enableAutomaticLogouts

This flag determines

whether automatic

logouts is enabled.

By default, jUDDI-gui

sets this to false for

ease of use. (true/

false)

N false

udddi/config/props/

enableAutomaticLogouts/

duration

Time in milliseconds

to force an automatic

logout after inactivity.

N 900000

uddi/config/props/

configLocalHostOnly

If false, the

configuration page

will be available

from anywhere. If

true, it will only be

accessible from the

server hosting juddi-

gui. (true/false)

N true

5.16. Encryption Keys

By default, the juddi-gui will use a randomly generated AES encryption key to help protect user

credentials stored in the session object. This key is generated using the "StartupServlet" defined in

Customizing

the

juddi-

gui

64

the web.xml file of juddi-gui.war/WEB-INF/web.xml and then it is stored at the path juddi-gui.war/

META-INF/config.properties@key.

If the start up servlet fails to start, any authenticate operation of the juddi-gui will fail.

Important

The user account that the container for juddi-gui runs as must have write access

to the file juddi-gui.war/META-INF/config.properties.

5.17. Customizing the juddi-gui

The juddi-gui has a mechanism that you can use to alter the appearance of every page. This is

typically used for organizations that require legal notifications, banners or warnings on every page

for one reason or another. To add your own html to every page, edit the file in

juddi-gui/user/banner.jsp

65

Chapter 6. Replication Services

6.1. Introduction

The UDDIv3 specification introduced a Replication API that outlines a mechansim for maintaing

data ownership and data synchronization across more than one UDDI node. The replication

specification has a number of facets that to the casual reader, can see overwhelmingly complex.

jUDDI v3 provides support for the majority of the UDDIv3 replication API. This article will attempt

to describe the in’s and out’s of the specification, what jUDDI supports and doesn’t, finally, how

to use it with your jUDDI instance(s).

6.2. UDDIv3 Replication Overview

The UDDIv3 replication API defines a number of web service methods that are used to manage

and replicate UDDI data. Each node is responsible for maintaining a record of all changes

made both locally and at all remote nodes. Everytime a Business, Service, Binding, tModel, or

Publisher Assertion changes, all nodes are notified of the change. Once receiving the notification

of the change, all nodes are then responsible to obtain the change set, apply it locally, and then

retransmit (if needed and based on topology). The topology is configured via the Replication

Configuration. With jUDDI, this is configured using the adminstration console.

There’s one important note to remember. Each piece of data in UDDI is owned by a given node.

6.2.1. UDDIv3 Replication Topology

The specification identifies two scenarios for replication topology.

1. Non-directed Graph: All nodes can talk directly to each other and have direct communication

with each other.

2. Directed Graph: Nodes can only talk to subset of the complete set of nodes.

The Non-directed graph is easier to implement and to understand. During the "notify" phase of

replication, the node where the change originates, simply tell’s everyone it knows about it.

In a directed graph, the node where the change originates only notifies the nodes designated

nodes. This typically forms some kind of ring in which one node notifies the next and so on until

the original change ends up at the origin.

6.2.2. Conflict handling

The specification defines a mechanism that is similar to a two step commit (for those familiar with

database terminology). Esscentially, when a given change (typically a new record) is created,

it then notifies all other nodes to put a block on the new record’s keys and waits for all

nodes to respond with an "OK" to commit message. This prevents the same record from being

created in multiple locations. These types of messages are refered to in the specification as

Configuring

your

jUDDI

Node

for

replication

66

NewDataConditional. As of the time of this writting jUDDI doesn’t support it. When a record is

created at the same at two different nodes within the same replication graph, jUDDI will simply

reject the change and prevent the modifications or the transfer from happening. Records that

fail to apply for one reason or another are stored in the database and can be accessed via the

admin console via "Admin" and selected "getFailedReplicationChangeRecords" from the drop

down menu.

6.3. Configuring your jUDDI Node for replication

Prerequisites:

1. Each node must have a unique ID associated with it.

2. Each node must have the UDDI v3 Replication service (juddiv3replication.war) deployed and

configured for CLIENT-CERT authentication using SSL/TLS.

3. Each node must have a configured JKS key store and trust store.

6.3.1. Changing the Node ID

Forgot to change the Node ID before starting jUDDI for the first time? No problem. Visit the jUDDI

Administration console at http://localhost:8080/juddiv3/admin, then go to the Admin page and

select "Change Node Id" from the drop down menu.

6.3.2. Setting up CLIENT-CERT authentication

Since a registry can be corrupted via the replication endpoint, it is important to provide adequate

security. The UDDI spec recommends using mutual certificate authentication. This is somtimes

returned to as "CLIENT-CERT", certificate based authentication, or two-way SSL. All of these

terms really refer to the same thing. jUDDI comes prebundled with Apache Tomcat that is

configured for mutal certificate authentication out of the box (with self signed certificates). To setup

CLIENT-CERT authentication, please see the documentation for your web application server.

6.3.2.1. Special notes on key stores and trust stores

jUDDI’s use of key stores and trust stores for replication purposes using the standard system

properties - -Djavax.net.ssl.keyStore - -Djavax.net.ssl.keyPassword - -Djavax.net.ssl.trustStore -

-Djavax.net.ssl.trustStorePassword

These are used for transport layer security (node to node). On a side node, jUDDI (server) can

also use the trust store to verify signed entities (configured though juddiv3.xml) and finally, the

application server itself needs access to the key store and trust store for providing a certificate

for SSL/TLS communication with clients for validating users (or another jUDDI replication node)

that provide a client certificate.

For Tomcat, all you need is a connector with "clientAuth=want". Here’s an example:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"

http://localhost:8080/juddiv3/admin

Setting

up

CLIENT-

CERT

authentication

67

 maxThreads="150" scheme="https" secure="true"

 clientAuth="want" sslProtocol="TLS"

 truststoreFile="truststore.jks" truststorePass="password"

 keystoreFile="conf/keystore.jks" keystorePass="password"/>

6.3.2.2. Mapping certificates to roles

For each certificate that is used by a jUDDI node to authenticate to another, you’ll have to map

the Subject DN of the certificate to a user with the role "replication". In our example, we’ll use

tomcat’s tomcat-users.xml file.

<user username="CN=localhost, OU=jUDDI Test, O=Apache Software Foundation,

 L=Anytown, ST=MD, C=US" password="null" roles="replication"/>

In this example, we’ve added our test certificate’s subject DN to the role of "replication".

Tip

If you run into issues getting things working, try adding the following to the startup

parameters for tomcat: -Djavax.net.debug=all

Important

Besides mapping the certificates to the replication role, either the certificate itself or

the issuer of the certificate must be in the trust store used by the application server.

Since dealing with certificates can be confusing, consider the following configuration.

• Node 1 sends updates to Node 2

• Node 2 sends updates to Node 1

Then the certificates must be setup as follows (assuming that each node’s SSL cert is used for

authentication to the other node(s))

• Node 1’s public key must be trusted by Node 2 (in Node 2 app server’s trust store)

• Node 2’s public key must be trusted by Node 1 (in Node 1 app server’s trust store)

• Node 1 must have Node 2’s certificate’s Subject DN mapped to the replication role

• Node 2 must have Node 1’s certificate’s Subject DN mapped to the replication role

• Node 1’s public and private keys must be in a keystore on Node 1 (and the Java -D properties

set)

Setting

the

Replication

Configuration

68

• Node 2’s public and private keys must be in a keystore on Node 2 (and the Java -D properties

set)

6.3.3. Setting the Replication Configuration

To set the replication configuration, you’ll need to go to http://localhost:8080/juddiv3/admin then

click on "Admin" in the top navigation bar and login. Once logged in, select "set_ReplicationNodes"

from the drop down menu. The text entry field is actually resizable, so you’ll probably want to make

it bigger. This text box should be pre-populated with an example replication configuration. Edit the

replication as needed, then click the "Go!" button to save it.

Note: when saving the configuration, several of the fields (time stamp, serial number) will be

overwritten by the server. This is normal.

Additional notes: jUDDI doesn’t currently support maximumTimeToSyncRegistry,

maximumTimeToGetChanges, and controlledMessage. Due to the way the specification was

written, these fields are mandatory (they must be in the Replication Configuration XML), but jUDDI

wont’t respect them.

6.3.3.1. Replication Configuration

When using jUDDI’s Admin console to set the replication config, here’s a few things to keep in

mind (using xpath notation).

• replicationConfiguration/operator() - All nodes in the replication graph must be listed in the

Operator section, including all directed graph nodes

• replicationConfiguration/registryContact - Must have at least one contact. If one is specified for

the node’s root business, then jUDDI will include that with the default config.

• replicationConfiguration/communicationGraph - Must be specified with all nodes listed as

identified by the NodeID in replicationConfiguration/operator/operatorNodeID.

• replicationConfiguration/communicationGraph/controlledMessage must be specified. jUDDI

uses a * to represent all messages.

• replicationConfiguration/maximumTimeToSyncRegistry isn’t used and jUDDI will always set it

to 1

• replicationConfiguration/maximumTimeToGetChanges - isn’t used and jUDDI will always set it

to 1

• replicationConfiguration/serialNumber - jUDDI will always set this to the time stamp when the

configuration was last changed (time since epoch)

• replicationConfiguration/timeOfConfigurationUpdate - jUDDI will always set this to the time

stamp when the configuraiton was last changed in a human readable form. The UDDI

specification doesn’t state what format it should be in, so we used ISO 8601 as the format.

Everytime the configuration changes, an audit log is required in jUDDI log file.

http://localhost:8080/juddiv3/admin

Setting

the

Replication

Configuration

69

Here’s an example default configuration

<?xml version="1.0" encoding="UTF-8"?><replicationConfiguration

 xmlns="urn:uddi-org:repl_v3" xmlns:ns2="urn:uddi-org:api_v3"

 xmlns:ns3="http://www.w3.org/2000/09/xmldsig#">

 <serialNumber>1424114880586</serialNumber>

 <timeOfConfigurationUpdate>201502161428-0500</timeOfConfigurationUpdate>

 <registryContact>

 <ns2:contact>

 <ns2:personName>unknown</ns2:personName>

 </ns2:contact>

 </registryContact>

 <operator>

 <operatorNodeID>uddi:juddi.apache.org:node1</operatorNodeID>

 <operatorStatus>normal</operatorStatus>

 <ns2:contact/>

 <soapReplicationURL>http://localhost:8080/juddiv3/services/

replication</soapReplicationURL>

 </operator>

 <communicationGraph>

 <node>uddi:juddi.apache.org:node1</node>

 <controlledMessage>*</controlledMessage>

 </communicationGraph>

 <maximumTimeToSyncRegistry>1</maximumTimeToSyncRegistry>

 <maximumTimeToGetChanges>1</maximumTimeToGetChanges>

</replicationConfiguration>

Here’s an example non-directed replicaton graph. In this example, all changes perform on all

nodes get set to all the other nodes.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<replicationConfiguration xmlns="urn:uddi-org:repl_v3" xmlns:ns2="urn:uddi-

org:api_v3" xmlns:ns3="http://www.w3.org/2000/09/xmldsig#">

 <serialNumber>0</serialNumber>

 <timeOfConfigurationUpdate></timeOfConfigurationUpdate>

 <registryContact>

 <ns2:contact>

 <ns2:personName>unknown</ns2:personName>

 </ns2:contact>

 </registryContact>

 <operator>

 <operatorNodeID>uddi:juddi.apache.org:node1</operatorNodeID>

 <operatorStatus>normal</operatorStatus>

 <ns2:contact useType="admin">

 <ns2:personName xml:lang="en">bob</ns2:personName>

 </ns2:contact>

 <soapReplicationURL>https://localhost:8443/juddiv3replication/

services/replication</soapReplicationURL>

 </operator>

Setting

the

Replication

Configuration

70

 <operator>

 <operatorNodeID>uddi:another.juddi.apache.org:node2</operatorNodeID>

 <operatorStatus>normal</operatorStatus>

 <ns2:contact useType="admin">

 <ns2:personName xml:lang="en">mary</ns2:personName>

 </ns2:contact>

 <soapReplicationURL>https://localhost:9443/juddiv3replication/

services/replication</soapReplicationURL>

 </operator>

 <communicationGraph>

 <node>uddi:juddi.apache.org:node1</node>

 <node>uddi:another.juddi.apache.org:node2</node>

 <controlledMessage>*</controlledMessage>

 </communicationGraph>

 <maximumTimeToSyncRegistry>1</maximumTimeToSyncRegistry>

 <maximumTimeToGetChanges>1</maximumTimeToGetChanges>

</replicationConfiguration>

In this example, we have a directed graph where Node 1 sends to Node2, Node 2 to Node 3, and

Node 3 to Node 1. Note the addition of the replicationConfiguration/communicationGraph/edge()

that defines this interaction pattern. Again all nodes defined in edges must also be defined both

in the communicationGraph and as operator() XML elements.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<replicationConfiguration xmlns="urn:uddi-org:repl_v3" xmlns:ns2="urn:uddi-

org:api_v3" xmlns:ns3="http://www.w3.org/2000/09/xmldsig#">

 <serialNumber>0</serialNumber>

 <timeOfConfigurationUpdate></timeOfConfigurationUpdate>

 <registryContact>

 <ns2:contact>

 <ns2:personName>unknown</ns2:personName>

 </ns2:contact>

 </registryContact>

 <operator>

 <operatorNodeID>uddi:juddi.apache.org:node1</operatorNodeID>

 <operatorStatus>normal</operatorStatus>

 <ns2:contact useType="admin">

 <ns2:personName xml:lang="en">bob</ns2:personName>

 </ns2:contact>

 <soapReplicationURL>https://localhost:8443/juddiv3replication/

services/replication</soapReplicationURL>

 </operator>

 <operator>

 <operatorNodeID>uddi:another.juddi.apache.org:node2</operatorNodeID>

 <operatorStatus>normal</operatorStatus>

 <ns2:contact useType="admin">

 <ns2:personName xml:lang="en">mary</ns2:personName>

 </ns2:contact>

Performing

Custody

Transfer

between

nodes

71

 <soapReplicationURL>https://localhost:9443/juddiv3replication/

services/replication</soapReplicationURL>

 </operator>

 <operator>

 <operatorNodeID>uddi:yet.another.juddi.apache.org:node3</

operatorNodeID>

 <operatorStatus>normal</operatorStatus>

 <ns2:contact useType="admin">

 <ns2:personName xml:lang="en">mary</ns2:personName>

 </ns2:contact>

 <soapReplicationURL>https://localhost:10443/juddiv3replication/

services/replication</soapReplicationURL>

 </operator>

 <communicationGraph>

 <node>uddi:another.juddi.apache.org:node2</node>

 <node>uddi:juddi.apache.org:node1</node>

 <node>uddi:yet.another.juddi.apache.org:node3</node>

 <edge>

 <messageSender>uddi:juddi.apache.org:node1</messageSender>

 <messageReceiver>uddi:another.juddi.apache.org:node2</

messageReceiver>

 </edge>

 <edge>

 <messageSender>uddi:another.juddi.apache.org:node2</

messageSender>

 <messageReceiver>uddi:yet.another.juddi.apache.org:node3</

messageReceiver>

 </edge>

 <edge>

 <messageSender>uddi:yet.another.juddi.apache.org:node3</

messageSender>

 <messageReceiver>uddi:juddi.apache.org:node1</messageReceiver>

 </edge>

 </communicationGraph>

 <maximumTimeToSyncRegistry>1</maximumTimeToSyncRegistry>

 <maximumTimeToGetChanges>1</maximumTimeToGetChanges>

</replicationConfiguration>

One last point of interest, Edge’s can have a list of alternate message receivers and it is supported

by jUDDI.

6.3.4. Performing Custody Transfer between nodes

Custody transfer (from a user’s perspective) happens exacty the same way as it would to transfer

between two users on the same node. The only change is that the Replication API plays a

signficant role in this process and is thus a requirement.

What’s

Supported

and

What’s

Not

72

6.3.5. What’s Supported and What’s Not

Here’s a quick summary of what is and isn’t supported for jUDDI replication capabilities. Want

more support? Open a ticket and contribute.

Supported:

• Directed graph replication with retransmit (primary and alternate message receivers)

• Non-directed graphic replication (no edges defined)

• All UDDI data is replicated (Business, Binding, Serivce, tModels and Publisher Assertions)

• Custody transfer from Node to Node within the replication graph.

Functions not supported:

• Conditional Data Updates

• Configuration Settings:

• maximumTimeToSyncRegistry

• maximumTimeToGetChanges

• OperatorStatus - Node Status (New, Normal, Resigned)

• Controlled Messages (all messages are sent to all nodes)

73

Chapter 7. UDDI Seed Data
This information is relevant for both understanding how jUDDI’s default data is set when jUDDI

first runs (i.e. to a new database). It’s also useful for scripting or automating the deployment of a

jUDDI server within your organization which will enable you to prepopulate the data.

As of UDDI v3, each registry need to have a "root" publisher. The root publisher is the owner of the

UDDI services (inquiry, publication, etc). There can only be one root publisher per node. JUDDI

ships some default seed data for the root account. The default data can be found in the juddi-

core-3.x.jar, under juddi_install_data/. By default jUDDI installs two Publishers: "root" and "uddi".

Root owns the root partition, and uddi owns all the other seed data such as pre-defined tModels.

7.1. Seed Data Files

For each publisher there are four seed data files that will be read the first time you start jUDDI:

<publisher>_Publisher.xml

<publisher>_tModelKeyGen.xml

<publisher>_BusinessEntity.xml

<publisher>_tModels.xml

For example the content of the root_Publisher.xml looks like

<publisher xmlns="urn:juddi-apache-org:api_v3" authorizedName="root">

 <publisherName>root publisher</publishername>

 <isAdmin>true</isadmin>

</publisher>

Each publisher should have its own key generator schema so that custom generated keys cannot

end up being identical to keys generated by other publishers. It is therefor that the each publisher

need to define their own KenGenerator tModel. The tModel Key Generator is defined in the file

root_tModelKeyGen.xml and the content of this file is

<tModel tModelKey="uddi:juddi.apache.org:keygenerator" xmlns="urn:uddi-

org:api_v3">

 <name>uddi-org:keyGenerator</name>

 <description>Root domain key generator</description>

 <overviewDoc>

 <overviewURL useType="text">

 http://uddi.org/pubs/uddi_v3.htm#keyGen

 </overviewurl>

 </overviewdoc>

 <categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types"

 keyName="uddi-org:types:keyGenerator"

Seed

Data

Files

74

 keyValue="keyGenerator" />

 </categorybag>

</tmodel>

This means that the legal format of keys used by the root publisher need to be in the form

uddi:juddi.apache.org:<text-of-chioce></text-of-chioce> The use of other types of format will lead

to an illegal key error. The root publisher can only own one KeyGenerator while any other

publisher can own more then one KeyGenerator. KeyGenerators should not be shared unless

there is a good reason to do so. If you want to see your publisher with more then just the one

KeyGenerator tModel, you can use the <publisher></publisher>_tModels.xml file. Finally, in the

<publisher></publisher>_BusinessEntity.xml file can be used to setup Business and Service data.

In the root_BusinessEntity.xml we specified the ASF Business, and the UDDI services; Inquiry,

Publish, etc.:

<businessEntity xmlns="urn:uddi-org:api_v3" xmlns:xml="http://www.w3.org/

XML/1998/namespace" businessKey="uddi:juddi.apache.org:businesses-asf">

 <!-- Change the name field to represent the name of your registry -->

 <name xml:lang="en">An Apache jUDDI Node</name>

 <!-- Change the description field to provided a brief description of your

 registry -->

 <description xml:lang="en">This is a UDDI v3 registry node as implemented

 by Apache jUDDI.</description>

 <discoveryURLs>

 <!-- This discovery URL should point to the home installation URL of

 jUDDI -->

 <discoveryURL useType="home">${juddi.server.baseurl}/juddiv3</

discoveryURL>

 </discoveryURLs>

 <categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:nodes"

 keyValue="node" />

 </categoryBag>

 <businessServices>

 <!-- As mentioned above, you may want to provide user-defined keys for

 these (and the services/bindingTemplates below. Services that you

 don't intend to support should be removed entirely -->

 <businessService serviceKey="uddi:juddi.apache.org:services-inquiry"

 businessKey="uddi:juddi.apache.org:businesses-asf">

 <name xml:lang="en">UDDI Inquiry Service</name>

 <description xml:lang="en">Web Service supporting UDDI Inquiry API</

description>

 <bindingTemplates>

 <bindingTemplate bindingKey="uddi:juddi.apache.org:servicebindings-

inquiry-ws" serviceKey="uddi:juddi.apache.org:services-inquiry">

 <description>UDDI Inquiry API V3</description>

 <!-- This should be changed to the WSDL URL of the inquiry API.

 An access point inside a bindingTemplate will be found for every service

 in this file. They all must point to their API's WSDL URL -->

Tokens

in

the

Seed

Data

75

 <accessPoint useType="wsdlDeployment">${juddi.server.baseurl}/

services/inquiry?wsdl</accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo tModelKey="uddi:uddi.org:v3_inquiry">

 <instanceDetails>

 <instanceParms>

 <![CDATA[

 <?xml version="1.0" encoding="utf-8" ?>

 <UDDIinstanceParmsContainer xmlns="urn:uddi-

org:policy_v3_instanceParms">

 <defaultSortOrder>

 uddi:uddi.org:sortorder:binarysort

 </defaultSortOrder>

 </UDDIinstanceParmsContainer>

]]>

 </instanceParms>

 </instanceDetails>

 </tModelInstanceInfo>

 </tModelInstanceDetails>

 <categoryBag>

 <keyedReference keyName="uddi-org:types:wsdl"

 keyValue="wsdlDeployment" tModelKey="uddi:uddi.org:categorization:types"/>

 </categoryBag>

 </bindingTemplate>

 </bindingTemplates>

 </businessService>

<!-- snip -->

</businessService>

Note that the seeding process only kicks off if no publishers exist in the database. So this will only

work with a clean database, unless you set juddi/seed/always to true. Then it will re-apply all files

with the exception of the root data files. Note that this can lead to losing data that was added to

entities that are re-seeded, since data is not merged.

7.2. Tokens in the Seed Data

You may have noticed the tokens in the root_BusinessEntity.xml file (${juddi.server.baseurl}. The

value of this tokens can set in the juddiv3.xml file. The value substitution takes place at runtime,

so that different nodes can do the substitution with their own value if needed.

7.3. Customer Seed Data

In your deployment you probably do not want to use the Seed Data shipped with the

default jUDDI install. The easiest way to overwrite this data is to add it to a directory call

juddi_custom_install_data in the juddiv3.war/WEB-INF/classes/ directory. That way you don’t

have to modify the juddi-core-3.x.jar. Additionally if your root publisher is not called "root" you will

need to set the juddi/root/publisher property in the juddiv3.xml file to something other then

Customer

Seed

Data

76

juddi/root/publisher=root

The juddiv3.war ships with two example data directory. One for the Sales Affiliate, and one for the

Marketing Affiliate. To use the Sales Seed Data, in the juddiv3.war/WEB-INF/classes/, rename

the directory

*nix

mv RENAME4Sales_juddi_custom_install_data juddi_custom_install_data

Win*

ren RENAME4Sales_juddi_custom_install_data juddi_custom_install_data

before you start jUDDI the first time. It will then use this data to populate the database. If you want

to rerun you can trash the database it created and restart tomcat. Don’t forget to set the tokens

in the juddiv3.xml file.

77

Chapter 8. How to deploy jUDDI

To?
The jUDDI distribution ships preconfigured on Tomcat - it runs out of the box. All you have to do

in go into the juddi-distro-<version>/juddi-tomcat-<version>/bin directory and start up

Tomcat. All of this just as described in Chapter 2, Getting Started.

By default the juddiv3.war is configured to use OpenJPA and CXF. If you want to change your

JPA or WS provider, or you’d like to run on a different container then this chapter may come in

handy, as there a number of scripted profiles to change the configuration and dependencies in the

juddiv3.war. To run these maven based scripts you need to go into juddi-distro-<version>/

juddiv3-war directory.

8.1. Tomcat

8.1.1. OpenJPA and CXF

Target platform Tomcat and Derby using OpenJPA and CXF. Both OpenJPA and CXF are

packaged up in the juddiv3.war.

mvn clean package -P openjpa

Then copy the target/juddiv3.war to the <tomcat>/webapps directory.

8.1.2. Hibernate and CXF

Target platform Tomcat and Derby using Hibernate and CXF. Both Hibernate and CXF are

packaged up in the juddiv3.war.

mvn clean package -P hibernate

Then copy the target/juddiv3.war to the <tomcat>/webapps directory.

8.1.3. OpenJPA and Axis2

Target platform Tomcat and Derby using OpenJPA and Apache Axis2. Both Hibernate and Axis2

are packaged up in the juddiv3.war.

mvn clean package -P axis2

Then copy the target/juddiv3.war to the <tomcat>/webapps directory.

JBoss

78

8.2. JBoss

8.2.1. JBossAS 6.0.0.GA

This section describes how to deploy juddi to JBoss 6.0.0.GA.

First, download jboss-6.0.0.GA - the zip or tar.gz bundle may be found at http://www.jboss.org/

jbossas/downloads/. Download the bundle and uncompress it.

8.2.1.1. Hibernate and JBossWS-Native

Target platform JBoss-6.x and HSQL using Hibernate and JBossWS-native. The juddiv3.war relies

on Hibernate and JBossWS-native in the appserver.

mvn clean package -P hibernate-jbossws-native

Then copy the target/juddiv3.war to the <jboss>/server/default/deploy directory.

8.2.1.2. Hibernate and JBossWS-CXF

Target platform JBoss-6.x and HSQL using Hibernate and JBossWS-cxf. The juddiv3.war relies

on Hibernate and JBossWS-cxf in the appserver.

mvn clean package -P hibernate-jbossws-cxf

KNOWN ISSUES

Issue 1

15:14:37,275 SEVERE [RegistryServlet] jUDDI registry could not be

 started. org.apache.commons.configuration.ConfigurationException:

 java.util.zip.ZipException: error in opening zip file:

 org.apache.commons.configuration.ConfigurationException:

 org.apache.commons.configuration.ConfigurationException:

 java.util.zip.ZipException: error in opening zip file

Workaround: deploy juddiv3.war as a directory (not a zip file).

Issue 2

JBoss-5.x Note that configuration 3 and 4 will also run on JBoss-5.x, but you may run into

the following

ERROR [org.jboss.ws.metadata.wsdl.xmlschema.JBossXSErrorHandler]

 (main) [domain:http://www.w3.org/TR/xml-schema-1]::[key=src-

resolve]::Message=src-resolve: Cannot resolve the name ns1:Signature to a

 element declaration component.

http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/jbossas/downloads/

JBossAS

6.0.0.GA

79

Workaround: Unzip the deployers/jbossws.deployer/jbossws-native-core.jar and add the

xmldsig-core-schema.xsd in the schema directory,

10293 Fri May 27 14:40:40 EDT 2011 schema/xmldsig-core-schema.xsd

Edit the file META-INF/jbossws-entities.properties by adding a line at the bottom saying:

http\://www.w3.org/2000/09/xmldsig#=schema/xmldsig-core-schema.xsd

Copy juddiv3.war to server/default/deploy and unpack it.

Insert jboss-web.xml into the juddiv3.war/WEB-INF directory , should look like the following :

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE jboss-web PUBLIC

 "-//JBoss//DTD Web Application 2.3V2//EN"

 "http://www.jboss.org/j2ee/dtd/jboss-web_3_2.dtd">

<jboss-web>

 <resource-ref>

 <res-ref-name>jdbc/JuddiDS</res-ref-name>

 <jndi-name>java:JuddiDS</jndi-name>

 </resource-ref>

 <depends>jboss.jdbc:datasource=JuddiDS,service=metadata</depends>

</jboss-web>

8.2.1.3. Change web.xml

Replace the WEB-INF/web.xml with the jbossws-native-web.xml within docs/examples/appserver.

8.2.1.4. Configure Datasource

The first step for configuring a datasource is to copy your JDBC driver into the classpath. Copy your

JDBC driver into ${jboss.home.dir}/server/${configuration}/lib, where configuration is the profile

you wish to start with (default, all, etc.). Example :

cp mysql-connector-java-5.0.8-bin.jar /opt/jboss-5.1.0.GA/server/default/lib

Next, configure a JBoss datasource file for your db. Listed below is an example datasource for

MySQL :

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

JBossAS

7.x/

JBossEAP-6.x

80

 <jndi-name>JuddiDS</jndi-name>

 <connection-url>jdbc:mysql://localhost:3306/juddiv3</connection-url>

 <driver-class>com.mysql.jdbc.Driver</driver-class>

 <user-name>root</user-name>

 <password></password>

 <exception-sorter-class-

name>org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter</exception-

sorter-class-name>

 <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml

 (optional) -->

 <metadata>

 <type-mapping>mySQL</type-mapping>

 </metadata>

 </local-tx-datasource>

</datasources>

Next, make a few changes to the juddiv3.war/classes/META-INF/persistence.xml. Change the

"hibernate.dialect" property to match the database you have chosen for persistence. For MySQL,

change the value of hibernate.dialect to "org.hibernate.dialect.MySQLDialect". A full list of dialects

available can be found in the hibernate documentation (https://www.hibernate.org/hib_docs/v3/

api/org/hibernate/dialect/package-summary.html). Next, change the <jta-data-source> tags so

that it reads <non-jta-data-source>, and change the value from java:comp/env/jdbc/JuddiDS to

java:/JuddiDS.

8.2.2. JBossAS 7.x/JBossEAP-6.x

This section describes how to deploy juddi to JBossAS 7, WildFly and JBossEAP 6

8.2.2.1. Hibernate and JBossWS-CXF

Target platform Wildfly/EAP and H2 using Hibernate and JBossWS-cxf. The juddiv3.war relies on

Hibernate and JBossWS-cxf modules in the appserver. To build the correct juddiv3.war run

mvn clean package -P jboss7up

Use the JBoss add-user.sh script to create an application user with the uddiadmin role.

8.3. Deploying to Glassfish

This section describes how to deploy juddi to Glassfish 2.1.1. These instructions will use CXF as

a webservice framework.

First, download the glassfish-v2.1.1 installer JAR. Once downloaded,install using the JAR and

then run the ant setup script :

java -jar glassfish-installer-v2.1.1-b31g-linux.jar

https://www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html
https://www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html

Glassfish

jars

81

cd glassfish

ant -f setup.xml

8.3.1. Glassfish jars

Copy the following JARs into domains/domain1/lib/ext. Note that for the purposes of this example,

we have copied the MySQL driver to domains/domain1/lib/ext :

antlr-2.7.6.jar

cglib-nodep-2.1_3.jar

commons-collections-3.2.1.jar

commons-logging-1.1.jar

dom4j-1.6.1.jar

hibernate-3.2.5.ga.jar

hibernate-annotations-3.3.0.ga.jar

hibernate-commons-annotations-3.0.0.ga.jar

hibernate-entitymanager-3.3.1.ga.jar

hibernate-validator-3.0.0.ga.jar

javassist-3.3.ga.jar

jboss-common-core-2.0.4.GA.jar

jta-1.0.1B.jar

mysql-connector-java-5.0.8-bin.jar

persistence-api-1.0.jar

8.3.2. Configure the JUDDI datasource

First, using the asadmin administration tool, import the following file :

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE resources PUBLIC "-//Sun Microsystems Inc.//DTD Application Server

 9.0 Domain//EN" "*<install directory>/lib/dtds/sun-resources_1_3.dtd*">

<resources>

<jdbc-connection-pool name="mysql-pool" datasource-

classname="com.mysql.jdbc.jdbc2.optional.MysqlDataSource" res-

type="javax.sql.DataSource">

<property name="user" value="juddi"/>

<property name="password" value="juddi"/>

<property name="url" value="jdbc:mysql://localhost:3306/juddiv3"/>

</jdbc-connection-pool>

<jdbc-resource enabled="true" jndi-name="jdbc/mysql-resource" object-

type="user" pool-name="mysql-pool"/>

</resources>

asadmin add-resources resource.xml

Then use the Glassfish administration console to create a "jdbc/juddiDB" JDBC datasource

resource based on the mysql-pool Connection Pool.

Add

juddiv3-

cxf.war

82

8.3.3. Add juddiv3-cxf.war

Unzip the juddiv3-cxf WAR into domains/domain1/autodeploy/juddiv3.war .

Add a sun-web.xml file into juddiv3.war/WEB-INF. Make sure that the JNDI references matches

the JNDI location you configured in the Glassfish administration console.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-web-app PUBLIC '-//Sun Microsystems, Inc.//DTD

Application Server 9.0 Servlet 2.5//EN'

'http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd'>

<sun-web-app>

<resource-ref>

<res-ref-name>jdbc/juddiDB</res-ref-name>

<jndi-name>jdbc/juddiDB</jndi-name>

</resource-ref>

</sun-web-app>

Next, make a few changes to juddiv3.war/WEB-INF/classes/META-INF/persistence.xml . Change

the "hibernate.dialect" property to match the database that you have chosen for persistence.

For MySQL, change the value of hibernate.dialect to "org.hibernate.dialect.MySQLDialect".

A full list of dialects available can be found in the hibernate documentation (https://

www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html). Next, change

the <jta-data-source> change the value from java:comp/env/jdbc/JuddiDS to java:comp/env/jdbc/

JuddiDB.

8.3.4. Run jUDDI

Start up the server :

cd bin

asadmin start-domain domain1

Once the server is deployed, browse to http://localhost:8080/juddiv3

https://www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html
https://www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html
http://localhost:8080/juddiv3

83

Chapter 9. Extending UDDI
jUDDI has extensively uses the Interface/Factory pattern to enable configuration runtime options

and to provide you, the developer easy insertion points to customize the behavior of jUDDI. The

remaining sections of this chapter outline the different technology insertion points.

9.1. Authentication modules

Authentication modules are used when the UDDI’s AuthToken is utilized on the Security web

service. It’s function is to point to some kind of user credential store to validate users. See the

User Guide for details on what’s available out of the box.

All of the provided classes implement the interface .org.apache.juddi.v3.auth.Authenticator.. So,

if you wanted something a bit more functional than what’s provided out of the box. you’ll need

to implement your own Authenticator. To wire it in, edit the juddiv3.xml file, specifying your class

name as the value to the property "juddi/auth/authenticator/class" and then add the class or

jar containing your implementation to juddiv3.war/WEB-INF/classes or judiv3.war/WEB-INF/lib

respectively.

9.2. Subscription Notification Handlers

Subscription Notification Handlers are used to asynchronously notify users that something has

changed in UDDI. In order to do this, a UDDI Subscription is created that references a specific

Binding Template key which represents the service that will be called whens something changes.

jUDDI comes with support for Email delivery and the UDDI Subscription Listener Web Service

(HTTP) delivery. In addition, jUDDI comes with an example for publishing to an Apache Qpid

AMQP pub/sub server, which can be used to further disseminate the change. The following is an

exert from the jUDDI Blog posting on this.

1. Make a new Java library projects in your IDE of choice. Reference the juddi-core, and uddi-ws

projects or JAR files or the Maven dependency equivalent

2. Create a class of your own within the following package name:

org.apache.juddi.subscription.notify

3. The class name MUST follow this pattern: PROTOCOLNotifier Where PROTOCOL is

the prefix of whatever URL you want users to be able to use. Here’s an example

using Apache Qpid. Example URL: amqp://guest:guest@client1/development?brokerlist=tcp://

localhost:5672 Class Name: AMQPNotifier. The Notification class basically takes the protocol

of the Access Point’s value, splits it on the character ":" and then grabs the first token "amqp"

and converts to upper case. Using this pattern you should be able to insert anything you want.

4. Our new shinny class, AMQPNotifier, must implement the interface

org.apache.juddi.subscription.notify.Notifier. From there, all you need to do is to add in the jars

necessary for your transport mechanism and wire in your own code.

KeyedReference

Value

Set

Validation

Services

84

5. Deployment is simple. Add your PROTOCOLNotifier jar and its dependencies to the

juddiv3.war/WEB-INF/lib folder.

Note: be careful and watch for conflicting jar file versions. In general, usually moving up a version

is ok, but moving down may cause the services to fail unexpectedly.

To test, create a Service with the BindingTemplate’s Access Point’s value equal to whatever you

need. Next, setup a subscription and reference the BindingTemplate key that represents your call

back handler’s end point. Finally, change an item that is covered by the subscription’s filter and

monitor the log files. Hopefully, you won’t see an unexpected errors.

9.3. KeyedReference Value Set Validation Services

Since jUDDI 3.2.1, we now have support for the Value Set Validation Service. This allows you to

define a validator that will check when a user saves a UDDI entity that references a given tModel

that contains a keyed reference to uddi:uddi.org:identifier:validatedby (which points to the VSV

service).

To defined your own validator, use the following steps # Create you tModel with a named

key # Implement the org.apache.juddi.validation.vsv.ValueSetValidator interface # Name your

implementation class using the naming schema defined in the ConvertKeyToClass function

of UDDIValueSetValidationImpl (first letter is upper, all else is lower. Numbers and letters

only. Class must be in the package org.apache.juddi.validation.vsv # Update your saved

tModel and add a keyed reference for uddi:uddi.org:identifier:validatedby using the value of

uddi:juddi.apache.org:servicebindings-valueset-cp # Get your class in the class path of jUDDI and

give it a shot

9.4. Cryptographic Providers

jUDDI provides cryptographic functions via (Java) juddi-client.jar/

org.apache.juddi.v3.client.cryptor and implement the Cryptor interface which provides two simple

functions, encrypt and decrypt. (Note: .NET has similar functionality).

9.5. jUDDI Client Transport

The juddi-client’s Transport class is an abstract class that you can you alter the transport

mechanism used by jUDDI’s client APIs. Included is what would be used in most cases, such as

JAXWS, RMI, and InVM (Embedded mode). This can be extended to use whatever you may need.

85

Chapter 10. Digital Signatures
Users of UDDI can use digital signatures to ensure that no unauthorized users alter the content

of UDDI. We’re sure that one of the first questions one would ask is "can’t access control rules

handle this problem for us?" The answer is yes, however it does not mitigate the risk of a number

of opportunities for electronic attack.

10.1. Requirements

UDDI supports both the XML Digital Signature specification, which effectively means that you can

use PGP Keys and X509 certificates. jUDDI provides out of the box support for X509 certificates

and the Public Key Infrastructure (PKI). If you require direct PGP signing support, please open

a JIRA ticket.

10.2. Using Digital Signatures using the jUDDI GUI

Please see ???.

10.3. Frequently Asked Questions

Doesn’t UDDI access control rules prevent alteration of the content?

Yes, however it does not mitigate the man in the middle attack vectors. Since UDDI is used

to determine the location of the thing you want, it’s possible that falsified endpoints can

be interjected in transport. The target service requires authentication, then the end user’s

credentials could be compromised without their knowledge.

How can I sign a business, service, tModel or binding?

Use the juddi-gui’s digital signature applet by first located the item in the juddi-gui interface,

then click on the "Sign" button. You need write access to the entity.

The digital signature applet doesn’t run. Now what?

The applet requires the Java browser plugin. Unfortunately, due to recent (2013) security

vulnerabilities, many places of business have heeded Oracle’s advice and have disabled the

browser plugin. There are other options, however.

What other tools can I use to sign a UDDI entity?

TBD

What is a signature?

It’s basically a cryptographic (a fancy math equation) using a set a keys (one is public and

everyone can see/know it, the other only is held by the owner) that proves that the owner

signed a piece of data.

How is a signature verified?

There’s a few ways, we can prove mathematically that the signature is valid (the content hasn’t

been modified). From there we can also verify that the signing key is valid.

Frequently

Asked

Questions

86

How do we know the signing key is valid?

Most certificates (key pairs) have some kind of mechanism in it to verify if the certificate has

been revoked. If your certificate has it, it will be labeled with something like OCSP or CRL.

Both of these are supported in both .NET and Java juddi-clients as well as via the juddi-gui.

87

Chapter 11. Troubleshooting jUDDI
Here are some tips to help you troubleshoot problems with jUDDI, jUDDI-GUI, jUDDI Client and

more.

11.1. jUDDI Web Services, juddiv3.war

11.1.1. Enable debugging logging

You can adjust the logging level to provide additional output for troubleshooting purposes. To do

so, see the Administration Guide, Logging.

11.2. jUDDI GUI, juddi-gui.war

Problem: Can’t authentication from juddi-gui’s top right hand side login box to juddiv3.war services

Solutions:

• Check the server’s log files for both juddi, juddi-gui and the server itself for error messages. This

can sometimes be caused by the lack of Java Crypto Extensions (Oracle/Sun JRE/JDK only).

• Check juddi-gui’s configuration page at http://localhost:8080/juddi-gui/settings.jsp, confirm that

the URL’s that are referenced for the UDDI services are correct and accessible from the server

hosting juddi-gui.

• Make sure you’re using a valid username/password ;)

• Increase the logging level of jUDDI by changing the commons-logging.properties file

• If you’re having problems with Email delivery of subscription updates, enable debug logging by

setting config/uddi/mail/debug=true in juddiv3.xml

11.3. jUDDI Client Java

11.3.1. Enable debugging logging

You can adjust the logging level to provide additional output for troubleshooting purposes. To do

so, see the Administration Guide, Logging.

11.4. jUDDI Client .NET

Components based on jUDDI’s Client for the .NET Framework can configure logging from their

application’s config file. This is usually app.config or web.config. To configure logging, the following

three settings must appear in the configuration/appSetttings section.

 <!-- DEBUG, INFO, WARN, ERROR -->

http://localhost:8080/juddi-gui/settings.jsp

Getting

help

88

 <add key="org.apache.juddi.v3.client.log.level" value="INFO" />

 <!-- options are CONSOLE, EVENTLOG, FILE multiple values can be

 specified, comma delimited.

 Notes for EVENTLOG, you must run the juddi-installer as admin before

 running-->

 <add key="org.apache.juddi.v3.client.log.target" value="CONSOLE" />

 <!-- only used when target=FILE -->

 <add key="org.apache.juddi.v3.client.log.logger.file"

 value="pathToOutputFile" />

If nothing is defined, the default log level is "WARN" and the target is "CONSOLE" which is

standard out.

11.5. Getting help

There are many different ways to get help with your jUDDI instance. Please refer to the following

URLs for more information.

• jUDDI Home Page http://juddi.apache.org/

• User Guide http://juddi.apache.org/docs/3.x/userguide/html/index.htmlnavbar.help.userguide

• Developer Guide http://juddi.apache.org/docs/3.x/devguide/html/

index.htmlnavbar.help.devguide

• Developer API Documentation http://juddi.apache.org/docs.html

• jUDDI Wiki http://wiki.apache.org/juddi

• jUDDI Issue/Bug Tracker http://juddi.apache.org/issue-tracking.html

• jUDDI User and Developer Mailing List http://juddi.apache.org/mailing-list.html

• jUDDI Source Code http://svn.apache.org/viewvc/juddi/

http://juddi.apache.org/
http://juddi.apache.org/docs/3.x/userguide/html/index.htmlnavbar.help.userguide
http://juddi.apache.org/docs/3.x/devguide/html/index.htmlnavbar.help.devguide
http://juddi.apache.org/docs/3.x/devguide/html/index.htmlnavbar.help.devguide
http://juddi.apache.org/docs.html
http://wiki.apache.org/juddi
http://juddi.apache.org/issue-tracking.html
http://juddi.apache.org/mailing-list.html
http://svn.apache.org/viewvc/juddi/

89

Chapter 12. Contributing to jUDDI
We welcome contributions to jUDDI. Visit the jUDDI web set at http://juddi.apache.org for more

information.

12.1. License guidance

Apache jUDDI is released under the Apache Software Foundation v2.0 License. Details on the

license is located at the following link: http://apache.org/licenses/LICENSE-2.0.

If you wish to bring in 3rd libraries, please keep in mind that certain libraries cannot be used due

to license restrictions. See http://www.apache.org/legal/3party.html for details.

12.2. SVN access

Source code is accessible at the following link: https://svn.apache.org/viewvc/juddi/trunk/.

12.3. Project structure

jUDDI, from a developer’s perspective, is divided into a number of smaller, more manageable

modules. In general, each module contains all of the necessary unit tests in order to ensure

functionality.

12.4. Building and testing jUDDI

jUDDI has a number of components, however it is mostly Java based. The following sections

describe the particulars for each language.

12.4.1. All Java Components

Procedure

1. Acquire a Subversion client.

2. Execute svn co https://svn.apache.org/viewvc/juddi/trunk/

3. Acquire a JDK5 or higher and setup the JAVA_HOME environment variable.

4. Acquire Apache Maven. Known working version: 3.0.4

5. Setup an environment variable, MAVEN_OPTS=-Xmx768m -XX:MaxPermSize=512m

6. Make sure the Maven/bin folder and the JDK/bin folders are in the current path

7. Execute "mvn clean install"

http://juddi.apache.org
http://apache.org/licenses/LICENSE-2.0
http://www.apache.org/legal/3party.html
https://svn.apache.org/viewvc/juddi/trunk/
https://svn.apache.org/viewvc/juddi/trunk/

.NET

90

This will build, test and package all of the Java components of jUDDI. This includes the Technical

Conformance Kit (TCK), a live Tomcat server, the user interfaces, and more.

For additional build output, add -Ddebug-true for Java.

To prepare a deployable jUDDI war for an alternate deployment scenario (other than Tomcat with

CXF and OpenJPA), use the following procedure:

1. Execute "mvn clean package -P<packageName>"

Where <packageName> is one of the following

1. openjpa-jboss7up for EAP 6 and up, GA 7 and up

2. hibernate-jbossws-native for EAP 5, Jboss GA 6 and down with the JbossWS Native soap stack

3. hibernate-jbossws-cxf for EAP 5, Jboss GA 6 and down with the JbossWS Native soap stack

4. hibernate (includes CXF in the war, used for Tomcat)

5. openjpa (includes CXF in the war, used for Tomcat)

6. axis2 (includes Axis2 in the war)

Tip

When altering the TCK based modules, make sure you clean install in the root

check out location. Due to the build order, you may end up with strange results

when just executing the tests, even with clean install.

Tip

To attach the debugger to the build process try "mvn -Dmaven.surefire.debug

clean install". It listens on port 5005 by default. More info on debugging

maven projects is here http://maven.apache.org/surefire/maven-surefire-plugin/

examples/debugging.html

12.4.2. .NET

jUDDI also has a .NET based jUDDI Client. To build this, only the .NET Framework needs to be

installed, version 3.5 or higher. A Visual Studio solution file is included, but it is not required for

building.

Procedure - Windows * Add MSBuild.exe to your system path. It’s usually in %SYSTEMROOT

%\Microsoft.NET\Framework(64)\v4.x.x. If you haven’t installed .NET 4 yet, replace v4.x.x with

http://maven.apache.org/surefire/maven-surefire-plugin/examples/debugging.html
http://maven.apache.org/surefire/maven-surefire-plugin/examples/debugging.html

Other

ways

to

Contribute

to

jUDDI

91

v2.x.x * Build the solution. This will build the juddi-client.net.dll, the same application(s) and the

test project(s).

MSBuild.exe juddi-client.net.sln /p:Configuration=Debug /p:Platform="Any

 CPU"

For additional debug output set the environment variable debug=true

set debug=true

Procedure - *nix using Mono

Tip

Support on Mono is very experimental. There are still many APIs that have no yet

been implements on Mono that may cause compilation failure.

To build the .NET assemblies on a Linux or Unix based computer: * Install Mono (apt-get install

mono-complete mono-develop * Build it

cd juddi-client.net

xbuild judddi-client.net-mono.sln

cd juddi-client.net-sample/bin/Debug/

mono juddi-client.net-sample.exe

12.5. Other ways to Contribute to jUDDI

There are many ways you can contribute to jUDDI. We welcome all kinds and types contributions.

12.5.1. Bug Reports

Bug reports and feature requests are low effort tasks that do not require a high level of technical

proficiency.

12.5.2. Internationalization

The jUDDI GUI user interface is designed to be multi-lingual. For the 3.2 release, English and

Spanish are provided for the user interface. The jUDDI server administration user interface is also

available in English and Spanish.

12.5.3. Contributing Source code

When contributing source code, you must own the code and be will to donate the code to the

Apache Software Foundation. For those without SVN access, the process is as follows: . Open a

Releases

92

JIRA on the jUDDI Issue Tracker . Write your code and test it (mvn clean install) . Use Subversion

to create a patch (svn patch) . Upload the patch as an attachment for the JIRA

Once accepted, your code will be added to the baseline. Code submissions may be modified for

style, content, documentation and any other reason that we see fit.

12.5.3.1. Coding Standards

The majority of jUDDI’s source code is formatted using 8 space tabs and using Javadoc style

documentation. In general, test cases are often more useful and more valuable that the code

being tested.

12.5.4. Releases

For the latest information on jUDDI’s release process, visit http://juddi.apache.org/committers.html

12.6. What the?

Having ran into a number of strange issues when developing with jUDDI, we decided to write a

few of them down.

1. I added a new class to juddi-core but it doesn’t end up in the packaged tomcat instance? A:

Modify the pom and make sure the package name is added to juddi-core-openjpa

2. Some unit tests fail, but only under windows. A: This is specifically for the SubscriptionListerner

Tests and most likely has something to do with ports getting locked up by the Java process.

http://juddi.apache.org/committers.html

93

Bibliography

Books
[graham-Davis-et-all] Steve Graham, Doug Davis et all. Building Web Services with Java - Making

sense of XML, SOAP, WSDL, and UDDI. Second Edition. Sams Publishing. 2005. ISBN

0-672-32641-8.

[stam-oree] Kurt Stam, Alex O’Ree et all. jUDDI Client and GUI Guide. 2014.

Articles
[uddi-v3] OASIS. https://www.oasis-open.org/standards#uddiv3.0.2. 2003.

WebSites
[uddi-xml-org] UDDI XML.org Editorial Board. http://uddi.xml.org/. 2014.

[uddi-oasis-open-org] OASIS. https://www.oasis-open.org/standards#uddiv3.0.2. 2003.

https://www.oasis-open.org/standards#uddiv3.0.2
http://uddi.xml.org/
https://www.oasis-open.org/standards#uddiv3.0.2

94

95

Index
D
directory, 1

R
registry, 1

S
specification, 1

U
UDDI

registry, 1

specification, 1

96

	Apache jUDDI Guide
	Table of Contents
	Preface
	Chapter 1. Universal Description, Discovery and Integration (UDDI)
	1.1. UDDI Protocol, Specification
	1.2. UDDI Registry
	1.3. jUDDI Project

	Chapter 2. Getting Started
	2.1. Prerequisites
	2.2. What should I Download?
	2.3. Running jUDDI
	2.4. Using the jUDDI Administrative Interface
	2.5. Using jUDDI Web Services
	2.6. Using jUDDI GUI to create your keygenerator and business
	2.7. Running the demos in the disto
	2.8. Examples on the jUDDI blog
	2.9. What is new in jUDDI 3.2?

	Chapter 3. jUDDI Architecture
	3.1. jUDDI Server
	3.1.1. UDDI API layer uddi-ws using JAX-WS
	3.1.2. Core UDDI juddi-core using JPA
	3.1.3. Relational Databases
	3.1.4. Servlet Containers

	3.2. jUDDI GUI juddi-gui.war

	Chapter 4. Administration
	4.1. Changing the Web Server Listen Port
	4.2. Administering Users and Access Control
	4.2.1. Administrative Users
	4.2.2. End Users
	4.2.2.1. Under the Hood
	4.2.2.2. Choosing a Cryptographic Provider
	4.2.2.2.1. jUDDI’s Cryptographic Providers
	4.2.2.2.2. jUDDI Server Providers

	4.2.2.3. jUDDI Client Providers (Java and .NET)
	4.2.2.3.1. Encrypting a Password

	4.2.2.4. jUDDI Authentication
	4.2.2.5. XMLDocAuthentication
	4.2.2.6. CryptedXMLDocAuthentication
	4.2.2.7. MD5XMLDocAuthenticator
	4.2.2.8. LDAP Authentication
	4.2.2.9. JBoss Authentication
	4.2.2.10. Container Based Authentication
	4.2.2.11. Authentication by Proxy (HTTP Header)

	4.3. Configuration Database Connections
	4.3.1. Derby Out-of-the-Box
	4.3.2. Switching to another Database
	4.3.3. Switch to MySQL on Tomcat using OpenJPA
	4.3.4. Switch to Postgres on Tomcat using OpenJPA
	4.3.5. Switch to Postgres on JBoss using Hibernate
	4.3.6. Switch to Oracle on Tomcat using Hibernate
	4.3.6.1. Changing the Oracle Sequence name

	4.3.7. Switch to HSQL on Tomcat using Hibernate
	4.3.8. Switch to other db
	4.3.9. Override persistence properties in the juddiv3.xml

	4.4. Logging
	4.5. Administering the GUI (juddi-gui.war)
	4.6. Task: Signing the Digital Signature Applet jar file
	4.7. Administrating your jUDDI Instance using the Administrative Console
	4.8. Configure jUDDI
	4.8.1. Enabling Remote Access

	4.9. Monitoring the Status and Statistics
	4.9.1. Statistics
	4.9.2. Status

	4.10. Accessing the jUDDIv3 API
	4.11. Security Guidance
	4.11.1. jUDDI Server
	4.11.2. jUDDI Client (and developers)
	4.11.3. jUDDI GUI (Web user interface)

	4.12. Backups, Upgrading and Data Migration
	4.12.1. Database Backups
	4.12.2. Config Backup

	4.13. Upgrading jUDDI
	4.14. Scaling jUDDI and Federation
	4.14.1. Scaling the jUDDI Services (multiple servers)
	4.14.1.1. Scaling using a common database
	4.14.1.2. Scaling using Subscriptions
	4.14.1.3. Replication API

	4.14.2. Limitations of jUDDI

	Chapter 5. jUDDI Server Configuration (juddiv3.xml)
	5.1. Authentication
	5.2. Startup
	5.3. Email
	5.4. Query Properties
	5.5. RMI Proxy
	5.6. Key Generation and Cryptography
	5.7. Subscription
	5.8. Custody Transfer
	5.9. Validation
	5.10. Logging
	5.11. Performance
	5.12. Replication
	5.13. Deploying two or more jUDDI server on the same application server
	5.14. jUDDI GUI Configuration
	5.15. jUDDI Client uddi.xml Settings
	5.16. Encryption Keys
	5.17. Customizing the juddi-gui

	Chapter 6. Replication Services
	6.1. Introduction
	6.2. UDDIv3 Replication Overview
	6.2.1. UDDIv3 Replication Topology
	6.2.2. Conflict handling

	6.3. Configuring your jUDDI Node for replication
	6.3.1. Changing the Node ID
	6.3.2. Setting up CLIENT-CERT authentication
	6.3.2.1. Special notes on key stores and trust stores
	6.3.2.2. Mapping certificates to roles

	6.3.3. Setting the Replication Configuration
	6.3.3.1. Replication Configuration

	6.3.4. Performing Custody Transfer between nodes
	6.3.5. What’s Supported and What’s Not

	Chapter 7. UDDI Seed Data
	7.1. Seed Data Files
	7.2. Tokens in the Seed Data
	7.3. Customer Seed Data

	Chapter 8. How to deploy jUDDI To?
	8.1. Tomcat
	8.1.1. OpenJPA and CXF
	8.1.2. Hibernate and CXF
	8.1.3. OpenJPA and Axis2

	8.2. JBoss
	8.2.1. JBossAS 6.0.0.GA
	8.2.1.1. Hibernate and JBossWS-Native
	8.2.1.2. Hibernate and JBossWS-CXF
	8.2.1.3. Change web.xml
	8.2.1.4. Configure Datasource

	8.2.2. JBossAS 7.x/JBossEAP-6.x
	8.2.2.1. Hibernate and JBossWS-CXF

	8.3. Deploying to Glassfish
	8.3.1. Glassfish jars
	8.3.2. Configure the JUDDI datasource
	8.3.3. Add juddiv3-cxf.war
	8.3.4. Run jUDDI

	Chapter 9. Extending UDDI
	9.1. Authentication modules
	9.2. Subscription Notification Handlers
	9.3. KeyedReference Value Set Validation Services
	9.4. Cryptographic Providers
	9.5. jUDDI Client Transport

	Chapter 10. Digital Signatures
	10.1. Requirements
	10.2. Using Digital Signatures using the jUDDI GUI
	10.3. Frequently Asked Questions

	Chapter 11. Troubleshooting jUDDI
	11.1. jUDDI Web Services, juddiv3.war
	11.1.1. Enable debugging logging

	11.2. jUDDI GUI, juddi-gui.war
	11.3. jUDDI Client Java
	11.3.1. Enable debugging logging

	11.4. jUDDI Client .NET
	11.5. Getting help

	Chapter 12. Contributing to jUDDI
	12.1. License guidance
	12.2. SVN access
	12.3. Project structure
	12.4. Building and testing jUDDI
	12.4.1. All Java Components
	12.4.2. .NET

	12.5. Other ways to Contribute to jUDDI
	12.5.1. Bug Reports
	12.5.2. Internationalization
	12.5.3. Contributing Source code
	12.5.3.1. Coding Standards

	12.5.4. Releases

	12.6. What the?

	Bibliography
	Index

